Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 355: 141759, 2024 May.
Article in English | MEDLINE | ID: mdl-38531500

ABSTRACT

The presence and fate of pharmaceutically active compounds (PhACs) in agricultural fields are rarely investigated. The present study highlights that root-derived low-molecular-weight organic acids (LMWOAs) affect the mobility of PhACs in cultivated humic Arenosol. Sorption experiments are conducted using three PhACs characterised by different physicochemical properties: carbamazepine (CBZ), 17α-ethinylestradiol (EE2), and diclofenac-sodium (DFC). The results suggest that the adsorption of EE2 is more intense than the other two PhACs, whereas DFC and CBZ are primarily dominated by desorption. LMWOAs mainly provide additional low-energy adsorption sites for the PhACs, and slight pH changes do not significantly affect the sorption mechanism. During competitive adsorption, the high-energy sites of the adsorbents are initially occupied by EE2 owing to its high adsorption energy (∼15 kJ/mol). The new low-energy binding sites enhance the adsorption of DFC (from 8.5 % to 72.0 %) and CBZ (from 31.0 % to 70.0 %) during multicomponent adsorption. LMWOAs not only affect adsorption by modifying the pH but also provide additional binding sites that allow the PhACs to remain in the root environment for a longer period. As the concentration of LMWOAs temporarily changes, so does the availability of PhACs in the root zone. Environmental changes in the humic horizon enhance the mobility of the adsorbed PhACs, which renders them continuously available for uptake by plants, thus increasing the possibility of PhACs entering the human food chain.


Subject(s)
Sand , Water Pollutants, Chemical , Humans , Organic Chemicals , Acids , Adsorption , Water Pollutants, Chemical/analysis
2.
Chemosphere ; 240: 124817, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31561160

ABSTRACT

A study was conducted on the sorption of 17α-ethynylestradiol (EE2) on five soils formed under different redox conditions: an Arenosol (A_20) with fully aerobic conditions, two Gleysol samples (G_20 and G_40) with suboxic and anoxic conditions and two Histosols (H_20 and H_80) with mostly anoxic conditions. The soils were characterized on the basis of total organic carbon (TOC), specific surface area (SSA) and the Fourier transform infrared spectra of the humic acid and humin fractions (the soil remaining after alkali extraction) of the soil. The maximum adsorption capacity of the soils (Qmax) ranged from 10.7 to 83.6 mg/g in the order G_20 > H_20 > G_40 > A_20 > H_80, which reflected the organic matter content of the soils. The sorption isotherms were found to be nonlinear for all the soil samples, with Freundlich n values of 0.45-0.68. The strong nonlinearity found in the adsorption of the H_80 samples could be attributed to their high hard carbon content, which was confirmed by the high aromaticity of the humin fraction. The maximum sorption capacity (Qmax) of the soils did not increase indefinitely as the organic carbon content of the soils rose. There could be two reasons for this: (i) the large amount of organic matter may reduce the number of binding sites on the surface, and (ii) the decrease in SSA with increasing soil OC content may limit the ability to adsorb EE2 molecules. In anaerobic soil samples, where organic matter accumulation is pronounced, the amount of aromatic and phenolic compounds was higher than in better aerated soil profiles. Strong correlations were found between the amount of aromatic and phenolic compounds in the organic matter and the adsorption of EE2 molecules, indicating that π-π interaction and H-bonding are the dominant sorption mechanisms.


Subject(s)
Ethinyl Estradiol/metabolism , Soil Pollutants/chemistry , Soil/chemistry , Adsorption , Anaerobiosis , Bacteria, Aerobic , Ethinyl Estradiol/analysis
3.
Metab Eng ; 10(5): 216-26, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18582593

ABSTRACT

To identify novel targets for metabolic engineering of riboflavin production, we generated about 10,000 random, transposon-tagged mutants of an industrial, riboflavin-producing strain of Bacillus subtilis. Process-relevant screening conditions were established by developing a 96-deep-well plate method with raffinose as the carbon source, which mimics, to some extent, carbon limitation in fed batch cultures. Screening in raffinose and complex LB medium identified more efficiently riboflavin overproducing and underproducing mutants, respectively. As expected for a "loss of function" analysis, most identified mutants were underproducers. Insertion mutants in two genes with yet unknown function, however, were found to attain significantly improved riboflavin titers and yields. These genes and possibly further ones that are related to them are promising candidates for metabolic engineering. While causal links to riboflavin production were not obvious for most underproducers, we demonstrated for the gluconeogenic glyceraldehyde-3-phosphate dehydrogenase GapB how a novel, non-obvious metabolic engineering strategy can be derived from such underproduction mutations. Specifically, we improved riboflavin production on various substrates significantly by deregulating expression of the gluconeogenic genes gapB and pckA through knockout of their genetic repressor CcpN. This improvement was also verified under the more process-relevant conditions of a glucose-limited fed-batch culture.


Subject(s)
Bacillus subtilis/genetics , Bacterial Proteins/genetics , DNA Transposable Elements/physiology , Mutagenesis, Insertional , Riboflavin/genetics , Bacillus subtilis/growth & development , Bacterial Proteins/metabolism , Gluconeogenesis/physiology , Riboflavin/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...