Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 386(1): 268-76, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22918046

ABSTRACT

This work presents the synthesis and physico-chemical characterization of a novel artificial photosynthetic design, using anisotropic semiconducting nanorods as scaffolds to assemble organic donor-acceptor complexes on their surface. These hierarchical hybrid D-A assemblies were obtained by the co-grafting of porphyrins and fullerenes on the ZnO nanorods. Polarity of the solvent and porphyrin to fullerene ratios were investigated to be markedly influencing the donor-acceptor interaction under the co-grafted conditions on ZnO nanorods. Fourier transform infrared spectroscopy, cyclic voltammetry, electronic absorption and fluorescence spectroscopic techniques were used to characterize the formation and investigate the optoelectronic properties of porphyrin-fullerene complexes on the surface of ZnO. To the best of our knowledge, this is the first example of highly interacting porphyrin-fullerene complexes on ZnO nanorods, which may allow generating efficient nanosystems for artificial photosynthesis and harvesting of solar energy.

2.
J Phys Chem Lett ; 3(4): 478-81, 2012 Feb 16.
Article in English | MEDLINE | ID: mdl-26286050

ABSTRACT

Gold/double-cable copolymer/gold multisegmented nanorods were prepared electrochemically via a template-based method. These "bulk heterojunction" nanorods showed photoconductivity providing us with a platform to study photoinduced charge separation/transport at the nanointerface and begin to think about the rational design of nanoscale solar cells based on such structures.

3.
J Am Chem Soc ; 131(9): 3198-200, 2009 Mar 11.
Article in English | MEDLINE | ID: mdl-19256567

ABSTRACT

A novel strategy for constructing a vertical arrangement of bicontinuous donor-acceptor arrays on a semiconducting electrode has been developed. The relationship between the film structure and the photoelectrochemical properties has been elucidated as a function of the number of donor layers for the first time. The maximum incident photon-to-current efficiency value (21%) is comparable to the highest value (20%) reported for vertical arrangements of bicontinuous donor-acceptor arrays on electrodes.


Subject(s)
Fullerenes/chemistry , Metalloporphyrins/chemistry , Zinc/chemistry , Electric Conductivity , Electrochemistry , Electrodes , Macromolecular Substances/chemical synthesis , Macromolecular Substances/chemistry , Metalloporphyrins/chemical synthesis , Palladium/chemistry , Photochemistry , Surface Properties , Tin Compounds/chemistry
4.
Langmuir ; 23(26): 13117-25, 2007 Dec 18.
Article in English | MEDLINE | ID: mdl-18004896

ABSTRACT

Photoinduced vectorial electron transfer in a molecularly organized porphyrin-fullerene (PF) dyad film is enhanced by the interlayer charge transfer from the porphyrin moiety of the dyad to an octanethiol protected (dcore approximately 2 nm) gold nanoparticle (AuNP) film. By using the time-resolved Maxwell displacement charge (TRMDC) method, the charge separation distance was found to increase by 5 times in a multilayer film structure where the gold nanoparticles face the porphyrin moiety of the dyad, that is, AuNP|PF, compared to the case of the PF layer alone. Films were assembled by the Langmuir-Blodgett (LB) method using octadecylamine (ODA) as the matrix compound. Atomic force microscopy (AFM) images of the monolayers revealed that AuNPs are arranged into continuous, islandlike structures and PF dyads form clusters. The porphyrin reference layer was assembled with the AuNP layer to gain insight on the interaction mechanism between porphyrin and gold nanoparticles. Interlayer electron transfer was also observed between the AuNPs and porphyrin reference, but the efficiency is lower than that in the AuNP|PF film. Fluorescence emission of the reference porphyrin is slightly quenched, and fluorescence decay becomes faster in the presence of AuNPs. The proposed mechanism for the electron transfer in the AuNP|PF film is thus the primary electron transfer from the porphyrin to the fullerene followed by a secondary hole transfer from the porphyrin to the AuNPs, resulting in an increased charge separation distance and enhanced photovoltage.

5.
Langmuir ; 22(12): 5497-503, 2006 Jun 06.
Article in English | MEDLINE | ID: mdl-16732683

ABSTRACT

Clusters of phthalocyanine and phthalocyanine-perylene diimide have been prepared and electrophoretically deposited on nanostructured SnO2 electrodes. The structure and photoelectrochemical properties of the clusters have been investigated by using UV-visible absorption, dynamic light scattering (DLS), atomic force microscopy (AFM), transmission electron microscopy (TEM), and photoelectrochemical and photodynamical measurements. Enhancement of the photocurrent generation efficiency in the composite system has been achieved relative to that in the phthalocyanine reference system without the perylene diimide. Such information will be valuable for the design of molecular photoelectrochemical devices that exhibit efficient photocurrent generation.

6.
J Phys Chem B ; 109(39): 18465-74, 2005 Oct 06.
Article in English | MEDLINE | ID: mdl-16853378

ABSTRACT

Hydrogen bonding effects on surface structure, photophysical properties, and photoelectrochemistry have been examined in a mixed film of porphyrin and fullerene composites with and without hydrogen bonding on indium tin oxide and nanostructured SnO2 electrodes. The nanostructured SnO2 electrodes modified with the mixed films of porphyrin and fullerene composites with hydrogen bonding exhibited efficient photocurrent generation compared to the reference systems without hydrogen bonding. Atomic force microscopy, infrared reflection absorption, and ultraviolet-visible absorption spectroscopies and time-resolved fluorescence lifetime and transient absorption spectroscopic measurements disclosed the relationship between the surface structure and photophysical and photoelectrochemical properties relating to the formation of hydrogen bonding between the porphyrins and/or the C60 moieties in the films on the electrode surface. These results show that hydrogen bonding is a highly promising methodology for the fabrication of donor and acceptor composites on nanostructured semiconducting electrodes, which exhibit high photoelectrochemical properties.


Subject(s)
Electrodes , Fullerenes/chemistry , Porphyrins/chemistry , Tin Compounds/chemistry , Electrochemistry , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Nanotechnology , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...