Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 398: 123002, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32506049

ABSTRACT

This study provides important new insights on how to achieve high sulfur selectivities and stable gas biodesulfurization process operation in the presence of both methanethiol and H2S in the feed gas. On the basis of previous research, we hypothesized that a dual bioreactor lineup (with an added anaerobic bioreactor) would favor sulfur-oxidizing bacteria (SOB) that yield a higher sulfur selectivity. Therefore, the focus of the present study was to enrich thiol-resistant SOB that can withstand methanethiol, the most prevalent and toxic thiol in sulfur-containing industrial off gases. In addition, the effect of process conditions on the SOB population dynamics was investigated. The results confirmed that thiol-resistant SOB became dominant with a concomitant increase of the sulfur selectivity from 75 mol% to 90 mol% at a loading rate of 2 mM S methanethiol day-1. The abundant SOB in the inoculum - Thioalkalivibrio sulfidiphilus - was first outcompeted by Alkalilimnicola ehrlichii after which Thioalkalibacter halophilus eventually became the most abundant species. Furthermore, we found that the actual electron donor in our lab-scale biodesulfurization system was polysulfide, and not the primarily supplied sulfide.


Subject(s)
Hydrogen Sulfide , Bacteria/genetics , Bioreactors , Ectothiorhodospiraceae , Gammaproteobacteria , Gases , Oxidation-Reduction , Sulfhydryl Compounds , Sulfur
2.
J Hazard Mater ; 386: 121916, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31884361

ABSTRACT

Removal of organic and inorganic sulfur compounds from sour gases is required because of their toxicity and atmospheric pollution. The most common are hydrogen sulfide (H2S) and methanethiol (MT). Under oxygen-limiting conditions about 92 mol% of sulfide is oxidized to sulfur by haloalkaliphilic sulfur-oxidizing bacteria (SOB), whilst the remainder is oxidized either biologically to sulfate or chemically to thiosulfate. MT is spontaneously oxidized to dimethyl disulfide (DMDS), which was found to inhibit the oxidation of sulfide to sulfate. Hence, we assessed the effect of DMDS on product formation in a lab-scale biodesulfurization setup. DMDS was quantified using a newly, in-house developed analytical method. Subsequently, a chemical reaction mechanism was proposed for the formation of methanethiol and dimethyl trisulfide from the reaction between sulfide and DMDS. Addition of DMDS resulted in significant inhibition of sulfate formation, leading to 96 mol% of sulfur formation. In addition, a reduction in the dominating haloalkaliphilic SOB species, Thioalkalivibrio sulfidiphilus, was observed in favor of Thioalkaibacter halophilus as a more DMDS-tolerant with the 50 % inhibition coefficient at 2.37 mM DMDS.


Subject(s)
Biofuels/analysis , Bioreactors/microbiology , Disulfides/chemistry , Hydrogen Sulfide/isolation & purification , Microbiota , Sulfates/analysis , Sulfhydryl Compounds/isolation & purification , Aerobiosis , Anaerobiosis , Disulfides/pharmacology , Kinetics , Microbiota/drug effects , Models, Theoretical , Oxidation-Reduction , Sulfur-Reducing Bacteria/growth & development
3.
AMB Express ; 9(1): 99, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31278455

ABSTRACT

Chemolithoautotrophic sulfur-oxidizing bacteria (SOB) are crucial key players in biotechnological processes to remove hydrogen sulfide from sour gas streams. Several different haloalkaliphilic SOB have been detected and isolated from lab- and full-scale facilities, which all performed differently considering end product yields (sulfur and sulfate) and conversion rates. Understanding and regulating bacterial community dynamics in biodesulfurization processes will enable optimization of the process operation. We developed quantitative PCR (qPCR) assays to quantify haloalkaliphilic sulfur-oxidizing gammaproteobacterial species Alkalilimnicola ehrlichii, Thioalkalivibrio sulfidiphilus, and Thioalkalibacter halophilus that dominate bacterial communities of biodesulfurization lab- and full-scale installations at haloalkaline conditions. The specificity and PCR efficiency of novel primer sets were evaluated using pure cultures of these target species. We further validated the qPCR assays by quantification of target organisms in five globally distributed full-scale biodesulfurization installations. The qPCR assays perform a sensitive and accurate quantification of Alkalilimnicola ehrlichii, Thioalkalivibrio sulfidiphilus and Thioalkalibacter halophilus, thus providing rapid and valuable insights into process performance and SOB growth dynamics in gas biodesulfurization systems.

4.
Water Res X ; 4: 100035, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31334497

ABSTRACT

Hydrogen sulfide is a toxic and corrosive gas that must be removed from gaseous hydrocarbon streams prior to combustion. This paper describes a gas biodesulfurization process where sulfur-oxidizing bacteria (SOB) facilitate sulfide conversion to both sulfur and sulfate. In order to optimize the formation of sulfur, it is crucial to understand the relations between the SOB microbial composition, kinetics of biological and abiotic sulfide oxidation and the effects on the biodesulfurization process efficiency. Hence, a physiologically based kinetic model was developed for four different inocula. The resulting model can be used as a tool to evaluate biodesulfurization process performance. The model relies on a ratio of two key enzymes involved in the sulfide oxidation process, i.e., flavocytochrome c and sulfide-quinone oxidoreductase (FCC and SQR). The model was calibrated by measuring biological sulfide oxidation rates for different inocula obtained from four full-scale biodesulfurization installations fed with gases from various industries. Experimentally obtained biological sulfide oxidation rates showed dissimilarities between the tested biomasses which could be explained by assuming distinctions in the key-enzyme ratios. Hence, we introduce a new model parameter α to whereby α describes the ratio between the relative expression levels of FCC and SQR enzymes. Our experiments show that sulfur production is the highest at low α values.

SELECTION OF CITATIONS
SEARCH DETAIL
...