Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(12)2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35744224

ABSTRACT

In the present study, the effect of material deposition at the elevated temperature baseplate on the microstructure and mechanical properties was investigated and correlated to the unique thermal history by using numerical simulation. Numerical results agreed well with the experimental results of microstructure and mechanical properties. Numerical results revealed a significant decrease in temperature gradient and a 40% decrease in thermal stress due to material deposition on the elevated temperature baseplate. The reduced thermal stress and temperature gradient resulted in coarser grain features, which in turn led to a decrease in hardness and tensile strength, especially for the bottom region near the baseplate. Meanwhile, no significant effect could be found for ductility. In addition, an elevated temperature baseplate promoted less heterogeneity in hardness and tensile properties along the building direction. The current work demonstrates a collective and direct understanding of the baseplate preheating effect on thermal stress, microstructure and mechanical properties and their correlations, which is believed beneficial for the better utilization of baseplate preheating positive effects.

2.
Materials (Basel) ; 15(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35407876

ABSTRACT

The advancement in additive manufacturing encourages the development of simplified tools for deep and swift research of the technology. Several approaches were developed to reduce the complexity of multi-track modeling for additive manufacturing. In the present work, a simple heat source model called concentrated heat source was evaluated for single- and multi-track deposition for directed energy deposition. The concentrated heat source model was compared with the widely accepted Goldak heat source model. The concentrated heat source does not require melt pool dimension measurement for thermal model simulation. Thus, it reduces the considerable time for preprocessing. The shape of the melt pool and temperature contour around the heat source was analyzed for single-track deposition. A good agreement was noticed for the concentrated heat source model melt pool, with an experimentally determined melt pool, using an optical microscope. Two heat source models were applied to multi-track 3D solid structure thermo-mechanical simulation. The results of the two models, for thermal history and residual stress, were compared with experimentally determined data. A good agreement was found for both models. The concentrated heat source model reported less than the half the computational time required for the Goldak model. The validated model, for 3D solid structure thermo-mechanical simulation, was used to analyze thermal stress evolution during the deposition process. The material deposition on the base plate at room temperature results in lower peak temperatures in the layers near the base plate. Consequently, the higher thermal stress in the layers near the base plate was found, compared to the upper layers during the deposition process.

3.
Materials (Basel) ; 14(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34576351

ABSTRACT

The microstructural morphology in additive manufacturing (AM) has a significant influence on the building structure. High-energy concentric heat source scanning leads to rapid heating and cooling during material deposition. This results in a unique microstructure. The size and morphology of the microstructure have a strong directionality, which depends on laser power, scanning rate, melt pool fluid dynamics, and material thermal properties, etc. The grain structure significantly affects its resistance to solidification cracking and mechanical properties. Microstructure control is challenging for AM considering multiple process parameters. A preheating base plate has a significant influence on residual stress, defect-free AM structure, and it also minimizes thermal mismatch during the deposition. In the present work, a simple single track deposition experiment was designed to analyze base plate preheating on microstructure. The microstructural evolution at different preheating temperatures was studied in detail, keeping process parameters constant. The base plate was heated uniformly from an external heating source and set the stable desired temperature on the surface of the base plate before deposition. A single track was deposited on the base plate at room temperature and preheating temperatures of 200 °C, 300 °C, 400 °C, and 500 °C. Subsequently, the resulting microstructural morphologies were analyzed and compared. The microstructure was evaluated using electron backscattered diffraction (EBSD) imaging in the transverse and longitudinal sections. An increase in grain size area fraction was observed as the preheating temperature increased. Base plate preheating did not show influence on grain boundary misorientation. An increase in the deposition depth was noticed for higher base plate preheating temperatures. The results were convincing that grain morphology and columnar grain orientation can be tailored by base plate preheating.

4.
Materials (Basel) ; 13(11)2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32545324

ABSTRACT

The rapid growth of Additive Manufacturing (AM) in the past decade has demonstrated a significant potential in cost-effective production with a superior quality product. A numerical simulation is a steep way to learn and improve the product quality, life cycle, and production cost. To cope with the growing AM field, researchers are exploring different techniques, methods, models to simulate the AM process efficiently. The goal is to develop a thermo-mechanical weld model for the Directed Energy Deposition (DED) process for 316L stainless steel at an efficient computational cost targeting to model large AM parts in residual stress calculation. To adapt the weld model to the DED simulation, single and multi-track thermal simulations were carried out. Numerical results were validated by the DED experiment. A good agreement was found between predicted temperature trends for numerical simulation and experimental results. A large number of weld tracks in the 3D solid AM parts make the finite element process simulation challenging in terms of computational time and large amounts of data management. The method of activating elements layer by layer and introducing heat in a cyclic manner called a thermal cycle heat input was applied. Thermal cycle heat input reduces the computational time considerably. The numerical results were compared to the experimental data for thermal and residual stress analyses. A lumping of layers strategy was implemented to reduce further computational time. The different number of lumping layers was analyzed to define the limit of lumping to retain accuracy in the residual stress calculation. The lumped layers residual stress calculation was validated by the contour cut method in the deposited sample. Thermal behavior and residual stress prediction for the different numbers of a lumped layer were examined and reported computational time reduction.

SELECTION OF CITATIONS
SEARCH DETAIL
...