Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 153(3): 1655, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37002070

ABSTRACT

We present an acoustic detection technique to study the interaction of two shock waves emitted by two nearby, simultaneous, laser-induced air-breakdown events that resembles the phenomenon of interaction of fluids. A microphone is employed to detect the acoustic shock wave (ASW) from the interaction zone. The experiments were done at various separation distances between the two plasma sources. The incident laser energy of the sources is varied from 25 to 100 mJ in ratios from 1:1 to 1:4. The peak sound pressure of the ASW was compared between the single and dual plasma sources, showing that the pressures are higher for the dual plasma source than that of the single plasma. The evolution of peak sound pressures is observed to depend on (a) the pulse energy of the sources and (b) the plasma separation distance, d. For the equal energy sources, the peak sound pressures increased linearly up to a certain plasma separation distance d, beyond which the pressures saturated and decayed. For the case of unequal energy sources, the peak sound pressures showed an interesting response of increase, saturation, decay, and further increase with plasma separation distance d. These observations indicate the dynamics of acoustic wave interactions across the interaction zone of the two sources depend on the input laser pulse energy as well as the plasma separation distance d.

2.
Opt Express ; 29(10): 14668-14681, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33985184

ABSTRACT

Femtosecond laser pulse induced filamentation in atmosphere is susceptible to a number of input laser, focusing optics and medium characteristics. Filamentation of fs pulses in atmosphere is an intense propagation regime where the focusing geometry used to focus the fs laser pulses play an important role influencing the filament intensity and the associated supercontinuum. We identified different optical elements used for focusing the fs laser pulses leading to filamentation in air and classified them according to the induced aberrations. To clearly identify the role of aberrations, all the optical elements were taken to have same focal length. The subsequent filament structure and emissions from the filament were correlated with the aberrations induced by optical element revealed stark differences. The onset of the filamentation, its longitudinal intensity and the associated supercontinuum emission (SCE) have varied drastically with the aberrations induced by the focusing optics. A systematic study directed to choose and identify suitable optical elements according to the usage of the fs pulses for a specific filamentation regime is presented.

3.
Opt Express ; 29(7): 10395-10405, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33820175

ABSTRACT

We present the spatial and temporal characterization of the copper (Cu) plasma produced by the femtosecond laser filaments. The filaments of various lengths and intensities were generated with the aid of three different focusing lenses. Further, the filamentation induced breakdown spectroscopy (FIBS) measurements were carried out for each filament at three different positions along the length of the filament. The filaments were spatially characterized by estimating the plasma temperature and electron density. Our investigation has demonstrated that the centre of the filament is the best to obtain a maximum signal. Both the spectral line intensity and their persistence time are highest for the center of the filament. The enhanced persistence and the scalability of the spectral line intensity tested across different focusing geometries can boost the application of this technique in various fields.

4.
Opt Lett ; 46(6): 1201-1204, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33720147

ABSTRACT

We report an enhanced supercontinuum generation (SCG) from a rare-earth (Pr3+) doped low bandgap zinc borate glass when excited with 60 fs pulses from a Ti-sapphire laser. The emission associated with the absorption bands due to Pr3+ doping (around 420-500 and 580-600 nm) is observed to assist the enhanced SCG.

5.
Appl Opt ; 55(3): 548-55, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26835930

ABSTRACT

Acoustic shock waves (ASWs) in the frequency range of 30-120 kHz generated during laser-induced breakdown (LIB) of ambient air using 7 ns and 30 ps pulse durations are studied. The specific frequency range and peak amplitudes are observed to be different for nanosecond (ns) and picosecond (ps) LIB. The ASW frequencies for ps-LIB lie between 90 and 120 kHz with one dominant peak, whereas for ns-LIB, two dominant peaks with frequencies in the 30-70 kHz and 80-120 kHz range are observed. These frequencies are observed to be laser pulse intensity dependent. With increasing energy of ns laser pulses, acoustic frequencies move toward the audible frequency range. The variation in the acoustic parameters, such as peak-to-peak pressures, signal energy, frequency and acoustic pulse widths as a function of laser energy, for two different pulse durations are presented in detail and compared. The acoustic emissions are observed to be higher for ns-LIB than ps-LIB, indicating higher conversion efficiency of optical energy into mechanical energy.

6.
Opt Express ; 22 Suppl 2: A268-75, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24922235

ABSTRACT

Laser ablated shock waves from compacted metal nanoenergetic powders of Aluminum (Al), Nickel coated Aluminum (Ni-Al) was characterized using shadowgraphy technique and compared with that from Boron Potassium Nitrate (BKN), Ammonium Perchlorate (AP) and Potassium Bromide (KBr) powders. Ablation is created by focused second harmonic (532 nm, 7 ns) of Nd:YAG laser. Time resolved shadowgraphs of propagating shock front and contact front revealed dynamics and the precise time of energy release of materials under extreme ablative pressures. Among the different compacted materials studied, Al nanopowders have maximum shock velocity and pressure behind the shock front compared to others.

7.
Opt Express ; 22(5): A268-75, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24800282

ABSTRACT

Laser ablated shock waves from compacted metal nanoenergetic powders of Aluminum (Al), Nickel coated Aluminum (Ni-Al) was characterized using shadowgraphy technique and compared with that from Boron Potassium Nitrate (BKN), Ammonium Perchlorate (AP) and Potassium Bromide (KBr) powders. Ablation is created by focused second harmonic (532 nm, 7 ns) of Nd:YAG laser. Time resolved shadowgraphs of propagating shock front and contact front revealed dynamics and the precise time of energy release of materials under extreme ablative pressures. Among the different compacted materials studied, Al nanopowders have maximum shock velocity and pressure behind the shock front compared to others.

8.
Opt Express ; 18(20): 21504-10, 2010 Sep 27.
Article in English | MEDLINE | ID: mdl-20941047

ABSTRACT

We present measurements of the supercontinuum emission (SCE) from ultrashort Ti:Saph laser pulse filamentation in air in a tightly focused geometry. The spectral broadening of SCE indicates that peak intensities exceed the clamping value of a few 10(13) W/cm(2) obtained for filamentation in a loose focusing geometry by at least one order of magnitude. We provide an interpretation for this regime of filamenation without intensity clamping.

9.
Appl Opt ; 41(36): 7631-6, 2002 Dec 20.
Article in English | MEDLINE | ID: mdl-12510931

ABSTRACT

Optical limiting performance, third-order nonlinearity chi(3), and nonlinear absorption properties have been investigated in a new class of azoarene phosphorus (V) porphyrins with charge transfer (CT) states. The introduction of axial azoarene groups into the phosphorus porphyrin structure is found to reduce the limiting threshold by a factor of 2 and lead to a rise in the second hyperpolarizability by 1 order of magnitude in the picosecond time regime and by 2 orders of magnitude in the nanosecond regime. The experimental data show reverse saturation of absorption in the nanosecond time regime and a saturation of the nonlinear absorption above a fluence of 0.5 J/cm2 in the picosecond regime. The presence of the CT state reduces saturation of excited-state absorption (ESA) in the S1 --> Sn transition through the S1 --> CT transition. Faster CT --> T1 transition increases the ESA from T1 --> Tn states in the nanosecond regime. A self-consistent theoretical analysis based on rate equations is used to estimate the high-lying excited-state lifetimes and absorption cross sections from the experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...