Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 136(9): 201, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37639019

ABSTRACT

KEY MESSAGE: FHB resistance of durum wheat was improved by introgression of Fhb1 and resistance genes from emmer wheat and by selection against adverse alleles of elite durum wheat. Durum wheat is particularly susceptible to Fusarium head blight (FHB) and breeding for resistance is impeded by the low genetic variation within the elite gene pool. To extend the genetic basis for FHB resistance in durum wheat, we analyzed 603 durum wheat lines from crosses of elite durum wheat with resistance donors carrying resistance alleles derived from Triticum aestivum, T. dicoccum and T. dicoccoides. The lines were phenotyped for FHB resistance, anthesis date, and plant height in artificially inoculated disease nurseries over 5 years. A broad variation was found for all traits, while anthesis date and plant height strongly influenced FHB severities. To correct for spurious associations, we adjusted FHB scorings for temperature fluctuations during the anthesis period and included plant height as a covariate in the analysis. This resulted in the detection of seven quantitative trait loci (QTL) affecting FHB severities. The hexaploid wheat-derived Fhb1 QTL was most significant on reducing FHB severities, highlighting its successful introgression into several durum wheat backgrounds. For two QTL on chromosomes 1B and 2B, the resistance alleles originated from the T. dicoccum line Td161 and T. dicoccoides accessions Mt. Hermon#22 and Mt. Gerizim#36, respectively. The other four QTL featured unfavorable alleles derived from elite durum wheat that increased FHB severities, with a particularly negative effect on chromosome 6A that simultaneously affected plant height and anthesis date. Therefore, in addition to pyramiding resistance genes, selecting against adverse alleles present in elite durum wheat could be a promising avenue in breeding FHB-resistant durum wheat.


Subject(s)
Ascomycota , Fusarium , Quantitative Trait Loci , Triticum/genetics , Plant Breeding
2.
Plant Biotechnol J ; 21(1): 109-121, 2023 01.
Article in English | MEDLINE | ID: mdl-36121345

ABSTRACT

Aegilops tauschii is the diploid progenitor of the wheat D subgenome and a valuable resource for wheat breeding, yet, genetic analysis of resistance against Fusarium head blight (FHB) and the major Fusarium mycotoxin deoxynivalenol (DON) is lacking. We treated a panel of 147 Ae. tauschii accessions with either Fusarium graminearum spores or DON solution and recorded the associated disease spread or toxin-induced bleaching. A k-mer-based association mapping pipeline dissected the genetic basis of resistance and identified candidate genes. After DON infiltration nine accessions revealed severe bleaching symptoms concomitant with lower conversion rates of DON into the non-toxic DON-3-O-glucoside. We identified the gene AET5Gv20385300 on chromosome 5D encoding a uridine diphosphate (UDP)-glucosyltransferase (UGT) as the causal variant and the mutant allele resulting in a truncated protein was only found in the nine susceptible accessions. This UGT is also polymorphic in hexaploid wheat and when expressed in Saccharomyces cerevisiae only the full-length gene conferred resistance against DON. Analysing the D subgenome helped to elucidate the genetic control of FHB resistance and identified a UGT involved in DON detoxification in Ae. tauschii and hexaploid wheat. This resistance mechanism is highly conserved since the UGT is orthologous to the barley UGT HvUGT13248 indicating descent from a common ancestor of wheat and barley.


Subject(s)
Aegilops , Fusarium , Triticum/genetics , Triticum/metabolism , Glucosyltransferases/genetics , Uridine Diphosphate , Plant Breeding , Plant Diseases/genetics , Disease Resistance/genetics
3.
Nat Biotechnol ; 40(3): 422-431, 2022 03.
Article in English | MEDLINE | ID: mdl-34725503

ABSTRACT

Aegilops tauschii, the diploid wild progenitor of the D subgenome of bread wheat, is a reservoir of genetic diversity for improving bread wheat performance and environmental resilience. Here we sequenced 242 Ae. tauschii accessions and compared them to the wheat D subgenome to characterize genomic diversity. We found that a rare lineage of Ae. tauschii geographically restricted to present-day Georgia contributed to the wheat D subgenome in the independent hybridizations that gave rise to modern bread wheat. Through k-mer-based association mapping, we identified discrete genomic regions with candidate genes for disease and pest resistance and demonstrated their functional transfer into wheat by transgenesis and wide crossing, including the generation of a library of hexaploids incorporating diverse Ae. tauschii genomes. Exploiting the genomic diversity of the Ae. tauschii ancestral diploid genome permits rapid trait discovery and functional genetic validation in a hexaploid background amenable to breeding.


Subject(s)
Aegilops , Aegilops/genetics , Bread , Genomics , Metagenomics , Plant Breeding , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...