Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121729, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35985226

ABSTRACT

Formaldehyde has an extremely reactive carbonyl group, commonly used as an antibacterial agent to sterilize and prevent food to spoil. This article describes an efficient and rapid detection method of formaldehyde from an aqueous solution by synthesizing 3-Aminopropyltriethoxysilane (APTES) quantum dots (Nano A) which react with formaldehyde to generate a Schiff base reaction. The photoinduced electron transfer produced by the quantum dots themselves results in fluorescence quenching to detect formaldehyde. The detection limit can reach 10-9 M, and it can further be used to detect formaldehyde content in foods, such as baby vegetables, mushrooms, and vermicelli among other daily foods.


Subject(s)
Quantum Dots , Fluorescence Resonance Energy Transfer/methods , Formaldehyde , Limit of Detection
2.
Anal Chim Acta ; 1198: 339516, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35190129

ABSTRACT

Plastic cups and bottles used for mineral water packaging may release plastic particles during continuous exposure to heat, light, or unfavorable chemical environments during transportation and storage. Surface-enhanced Raman spectroscopy (SERS) can be used to detect and analyze these plastic particles in a highly sensitive and quantitative manner. In this study, we used copper oxide/silver nanoparticles (CuO/Ag NPs) as the SERS substrate to monitor the release of plastic particles in packaged mineral water samples under irradiation as a function of exposure time. The lower detection limit for plastic particles using this CuO/Ag NP SERS system was 1.6 ng/mL. Our results showed that both plastic cups and bottles released particles under irradiation, however, the plastic cup samples degraded much more readily, with the particle concentration increasing considerably from 5.37 ± 0.11 ng/mL to 3751 ± 0.19 ng/ml over the total exposure time period of 240 min. In this study, we have demonstrated that SERS can provide a highly sensitive, rapid, and economical method for detecting plastic particle contamination caused by degradation of the plastic materials used in mineral water packaging.


Subject(s)
Drinking Water , Metal Nanoparticles , Drinking Water/analysis , Metal Nanoparticles/chemistry , Plastics , Silver/chemistry , Spectrum Analysis, Raman/methods
3.
Bioresour Technol ; 347: 126749, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35066130

ABSTRACT

Extremely soluble Malachite green (MG) acts as potential carcinogen for aquatic life in polluted aqueous environments. Current study aims to modify rice husk derived biochar to improve its removal efficiency for MG from MG-containing wastewaters. The hydrothermal alkali activation was effective for preparing modified biochar (RHMB) from native biochar (RHB) derived from rice husk. After modification, surface area and pore volume of RHMB was determined respectively 434.62 m2g-1 and 287.28 cm3g-1, significantly improved from native RHB values 21.764 m2g-1 and 65.53 cm3g-1. Pseudo second order kinetic model fitted well. RHMB exhibits an equilibrium adsorption capacity of 373.02 mg g-1. RHMB showed an excellent MG removal ability and was not susceptible to ion interference even at highly saline environments. It has exhibited 96.96 ± 1.17% removal efficiency of MG and is expected to be used as potential adsorbent for MG remediation from aquaculture wastewater and other MG containing industrial wastewaters.


Subject(s)
Oryza , Water Pollutants, Chemical , Adsorption , Charcoal , Kinetics , Rosaniline Dyes , Wastewater , Water Pollutants, Chemical/analysis
4.
J Environ Manage ; 297: 113430, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34351299

ABSTRACT

The growing number of industrial carbon emissions have resulted in a significant increase in the greenhouse gas carbon dioxide (CO2), which, in turn, will have a major impact on climate change. Therefore, the reduction, storage, and reuse of CO2 is an important concern in modern society. Calcium oxide (CaO) is known to be an excellent adsorbent of CO2 in a high-temperature environment. However, since deterioration of the adsorbent is likely to occur after repeated cycles of adsorption under high temperature conditions, it would be desirable to mitigate this phenomenon, in order to maintain the stability of CaO. In the present study, common eggshell waste was used as the starting material. The main component of eggshell waste is calcium carbonate (CaCO3), which was purified to produce CaO. Different surfactants and amino-containing polymers were added to synthesize CaO-based adsorbents with different configurations and pore sizes. The amount of CO2 adsorbed was determined using a thermogravimetric analyzer (TGA). The results showed that the CO2 adsorption capacity of the synthetic CaO recovered from purified eggshell waste could reach 0.6 g-CO2/g-sorbent, indicating a good adsorption capacity. CaO modified with a dopamine-containing polymer was shown to have an adsorption capacity of 0.62 g-CO2/g-sorbent. Moreover, it showed an excellent adsorption capacity of 0.40 g-CO2/g-sorbent, even after 10 cycles of CO2 adsorption. The present study suggests that using eggshell waste to synthesize CaO-based adsorbents for effective CO2 adsorption can not only reduce environmental waste, but also have the potential to capture greenhouse gas CO2 emissions, which conforms to the principles of green chemistry.


Subject(s)
Carbon Dioxide , Greenhouse Gases , Adsorption , Animals , Calcium Compounds , Egg Shell , Oxides
5.
Heliyon ; 7(3): e06400, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33869827

ABSTRACT

Dental compounds and restorative materials undergo surface degradation and erosion from exposure to a variety of dietary substances. In this study we investigated changes in the surface properties of Rebaron, a hard denture reline material (HDRM), following timed immersion in carbonated soft drinks to determine its durability in a common acidic environment. Samples were prepared and immersed in a carbonated soft drink (or its components) for 6, 12, or 24 h. Surface structure and mechanical properties were characterized using Atomic Force Microscopy (AFM). Raman spectroscopy was used to identify changes in the HDRM surface chemistry following exposure to the test solutions. AFM revealed that prolonged exposure led to pit formation and a subsequent increase in surface roughness, from 302.02 ± 30.20 to 430.59 ± 15.07 nm Ra, following a 24 h exposure. Young's modulus values decreased from 9.3 ± 7.0 to 0.53 ± 0.26 GPa under the same conditions, demonstrating a softening and embrittlement of the HDRM sample. Raman results revealed that immersion in the carbonated soft drink or acidic solution changed the nature of the HDRM structure, converting the HDRM surface chemistry from primarily hydrophobic to hydrophilic. Our study indicates that sustainability and durability of Rebaron HDRM are significantly reduced by prolonged exposure to carbonated (acidic) soft drink, resulting in deformation and degradation of the material surface.

6.
Materials (Basel) ; 14(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917109

ABSTRACT

The purpose of this study was to use agar as a multifunctional encapsulating material to allow drug and ferromagnetism to be jointly delivered in one nanoparticle. We successfully encapsulated both Fe3O4 and doxorubicin (DOX) with agar as the drug carrier to obtain DOX-Fe3O4@agar. The iron oxide nanoparticles encapsulated in the carrier maintained good saturation of magnetization (41.9 emu/g) and had superparamagnetism. The heating capacity test showed that the specific absorption rate (SAR) value was 18.9 ± 0.5 W/g, indicating that the ferromagnetic nanoparticles encapsulated in the gel still maintained good heating capacity. Moreover, the magnetocaloric temperature could reach 43 °C in a short period of five minutes. In addition, DOX-Fe3O4@agar reached a maximum release rate of 85% ± 3% in 56 min under a neutral pH 7.0 to simulate the intestinal environment. We found using fluorescent microscopy that DOX entered HT-29 human colon cancer cells and reduced cell viability by 66%. When hyperthermia was induced with an auxiliary external magnetic field, cancer cells could be further killed, with a viability of only 15.4%. These results show that agar is an efficient multiple-drug carrier, and allows controlled drug release. Thus, this synergic treatment has potential application value for biopharmaceutical carrier materials.

7.
Materials (Basel) ; 14(3)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535625

ABSTRACT

The development of polydopamine (PDA) coatings with a nanometer-scale thickness on surfaces is highly desirable for exploiting the novel features arising from the specific structure on the molecular level. Exploring the mechanisms of thin-film growth is helpful for attaining desirable control over the useful properties of materials. We present a systematic study demonstrating the growth of a PDA thin film on the surface of mica in consecutive short deposition time intervals. Film growth at each deposition time was monitored through instrumental techniques such as atomic force microscopy (AFM), water contact angle (WCA) analysis, and X-ray photoelectron spectroscopy (XPS). Film growth was initiated by adsorption of the PDA molecules on mica, with subsequent island-like aggregation, and finally, a complete molecular level PDA film was formed on the surface due to further molecular adsorption. A duration of 60-300 s was sufficient for complete formation of the PDA layer within the thickness range of 0.5-1.1 nm. An outstanding feature of PDA ultrathin films is their ability to act as a molecular adhesive, providing a foundation for constructing functional surfaces. We also explored antimicrobial applications by incorporating Ag nanoparticles into a PDA film. The Ag NPs/PDA film was formed on a surgical blade and then characterized and confirmed by SEM-EDS and XPS. The modified film inhibited bacterial growth by up to 42% on the blade after cutting through a pork meat sample.

SELECTION OF CITATIONS
SEARCH DETAIL
...