Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Malar J ; 21(1): 130, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35459163

ABSTRACT

BACKGROUND: The rise in Plasmodium falciparum resistance to dihydroartemisinin-piperaquine (DHA-PPQ) treatment has been documented in the Greater Mekong Subregion with associations with mutations in the P. falciparum chloroquine resistance transporter (pfcrt) and plasmepsin 2 (pfpm2) genes. However, it is unclear whether other genes also play a role with PPQ resistance, such as the E415G mutation in the exonuclease (pfexo) gene. The aim of this study was to investigate the role of this mutation in PPQ resistance by generating transgenic parasites expressing the pfexo-E415G mutant allele. METHODS: Transgenic parasite clones carrying the E415G mutation in PfEXO of the B5 isolate were derived by CRISPR-Cas9 gene editing and verified using PCR and gene sequencing. Polymorphisms of pfkelch-13, pfcrt, and pfexo were examined by PCR while the copy number variations of pfpm2 were examined by both relative quantitative real-time PCR and the duplication breakpoint assay. Drug sensitivity against a panel of antimalarials, the ring-stage survival assay (RSA), the PPQ survival assay (PSA), and bimodal dose-response curves were used to evaluate antimalarial susceptibility. RESULTS: The transgenic line, B5-rexo-E415G-B8, was successfully generated. The PPQ-IC90, %PPQ survival, and the bimodal dose-response clearly showed that E415G mutation in PfEXO of B5 isolate remained fully susceptible to PPQ. Furthermore, growth assays demonstrated that the engineered parasites grew slightly faster than the unmodified parental isolates whereas P. falciparum isolates harbouring pfkelch-13, pfcrt, and pfexo mutations with multiple copies of pfpm2 grew much more slowly. CONCLUSIONS: Insertion of the E415G mutation in PfEXO did not lead to increased PPQ-IC90 and %PPQ survival, suggesting that this mutation alone may not be associated with PPQ resistance, but could still be an important marker if used in conjunction with other markers for monitoring PPQ-resistant parasites. The results also highlight the importance of monitoring and evaluating suspected genetic mutations with regard to parasite fitness and resistance.


Subject(s)
Antimalarials , Malaria, Falciparum , Parasites , Quinolines , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Chloroquine/pharmacology , Chloroquine/therapeutic use , DNA Copy Number Variations , Drug Resistance/genetics , Exonucleases/genetics , Exonucleases/pharmacology , Exonucleases/therapeutic use , Malaria, Falciparum/parasitology , Membrane Transport Proteins/genetics , Mutation , Phosphodiesterase I/genetics , Phosphodiesterase I/pharmacology , Piperazines , Plasmodium falciparum , Point Mutation , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Quinolines/pharmacology , Quinolines/therapeutic use
2.
Sci Rep ; 11(1): 13419, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34183715

ABSTRACT

Malaria remains a public health problem in Thailand, especially along its borders where highly mobile populations can contribute to persistent transmission. This study aimed to determine resistant genotypes and phenotypes of 112 Plasmodium falciparum isolates from patients along the Thai-Cambodia border during 2013-2015. The majority of parasites harbored a pfmdr1-Y184F mutation. A single pfmdr1 copy number had CVIET haplotype of amino acids 72-76 of pfcrt and no pfcytb mutations. All isolates had a single pfk13 point mutation (R539T, R539I, or C580Y), and increased % survival in the ring-stage survival assay (except for R539I). Multiple copies of pfpm2 and pfcrt-F145I were detected in 2014 (12.8%) and increased to 30.4% in 2015. Parasites containing either multiple pfpm2 copies with and without pfcrt-F145I or a single pfpm2 copy with pfcrt-F145I exhibited elevated IC90 values of piperaquine. Collectively, the emergence of these resistance patterns in Thailand near Cambodia border mirrored the reports of dihydroartemisinin-piperaquine treatment failures in the adjacent province of Cambodia, Oddar Meanchey, suggesting a migration of parasites across the border. As malaria elimination efforts ramp up in Southeast Asia, host nations militaries and other groups in border regions need to coordinate the proposed interventions.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Quinolines/pharmacology , Adolescent , Adult , Aged , Antimalarials/administration & dosage , Antimalarials/therapeutic use , Artemisinins/administration & dosage , Artemisinins/therapeutic use , DNA Copy Number Variations , DNA, Protozoan/genetics , Drug Therapy, Combination , Endemic Diseases , Female , Genetic Association Studies , Genotype , Haplotypes/genetics , Humans , Malaria, Falciparum/epidemiology , Male , Middle Aged , Parasitemia/drug therapy , Parasitemia/epidemiology , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium falciparum/isolation & purification , Protozoan Proteins/genetics , Protozoan Proteins/physiology , Quinolines/administration & dosage , Quinolines/therapeutic use , Thailand/epidemiology , Young Adult
3.
Malar J ; 19(1): 269, 2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32711538

ABSTRACT

BACKGROUND: High rates of dihydroartemisinin-piperaquine (DHA-PPQ) treatment failures have been documented for uncomplicated Plasmodium falciparum in Cambodia. The genetic markers plasmepsin 2 (pfpm2), exonuclease (pfexo) and chloroquine resistance transporter (pfcrt) genes are associated with PPQ resistance and are used for monitoring the prevalence of drug resistance and guiding malaria drug treatment policy. METHODS: To examine the relative contribution of each marker to PPQ resistance, in vitro culture and the PPQ survival assay were performed on seventeen P. falciparum isolates from northern Cambodia, and the presence of E415G-Exo and pfcrt mutations (T93S, H97Y, F145I, I218F, M343L, C350R, and G353V) as well as pfpm2 copy number polymorphisms were determined. Parasites were then cloned by limiting dilution and the cloned parasites were tested for drug susceptibility. Isobolographic analysis of several drug combinations for standard clones and newly cloned P. falciparum Cambodian isolates was also determined. RESULTS: The characterization of culture-adapted isolates revealed that the presence of novel pfcrt mutations (T93S, H97Y, F145I, and I218F) with E415G-Exo mutation can confer PPQ-resistance, in the absence of pfpm2 amplification. In vitro testing of PPQ resistant parasites demonstrated a bimodal dose-response, the existence of a swollen digestive vacuole phenotype, and an increased susceptibility to quinine, chloroquine, mefloquine and lumefantrine. To further characterize drug sensitivity, parental parasites were cloned in which a clonal line, 14-B5, was identified as sensitive to artemisinin and piperaquine, but resistant to chloroquine. Assessment of the clone against a panel of drug combinations revealed antagonistic activity for six different drug combinations. However, mefloquine-proguanil and atovaquone-proguanil combinations revealed synergistic antimalarial activity. CONCLUSIONS: Surveillance for PPQ resistance in regions relying on DHA-PPQ as the first-line treatment is dependent on the monitoring of molecular markers of drug resistance. P. falciparum harbouring novel pfcrt mutations with E415G-exo mutations displayed PPQ resistant phenotype. The presence of pfpm2 amplification was not required to render parasites PPQ resistant suggesting that the increase in pfpm2 copy number alone is not the sole modulator of PPQ resistance. Genetic background of circulating field isolates appear to play a role in drug susceptibility and biological responses induced by drug combinations. The use of latest field isolates may be necessary for assessment of relevant drug combinations against P. falciparum strains and when down-selecting novel drug candidates.


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Genotype , Phenotype , Plasmodium falciparum/genetics , Quinolines/pharmacology , Cambodia , Genetic Markers , Plasmodium falciparum/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...