Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem Lett ; 13(3): 838-850, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35044779

ABSTRACT

Square-net materials are well positioned to lead optical spectroscopic explorations into the electronic structure, photoinduced dynamics, and phase transitions in topological semimetals. Hundreds of square-net topological semimetals can be prepared that have remarkably different electronic and optical properties despite having similar structures. Here we present what has been gleaned recently from these materials with the whole gamut of optical spectroscopies, ranging from steady-state reflectance and Raman investigations into topological band structures, electronic correlations, and equilibrium phase transitions to time-resolved techniques used to decipher ultrafast relaxation dynamics and nonequilibrium photoinduced phase transitions. We end with a discussion of some major remaining questions and possible future research directions.

2.
Sci Adv ; 6(51)2020 12.
Article in English | MEDLINE | ID: mdl-33355138

ABSTRACT

Magnetic Weyl semimetals are a newly discovered class of topological materials that may serve as a platform for exotic phenomena, such as axion insulators or the quantum anomalous Hall effect. Here, we use angle-resolved photoelectron spectroscopy and ab initio calculations to discover Weyl cones in CoS2, a ferromagnet with pyrite structure that has been long studied as a candidate for half-metallicity, which makes it an attractive material for spintronic devices. We directly observe the topological Fermi arc surface states that link the Weyl nodes, which will influence the performance of CoS2 as a spin injector by modifying its spin polarization at interfaces. In addition, we directly observe a minority-spin bulk electron pocket in the corner of the Brillouin zone, which proves that CoS2 cannot be a true half-metal.

3.
J Phys Chem Lett ; 11(15): 6105-6111, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32657592

ABSTRACT

The ultrafast optical response of nodal-line semimetals ZrSiS and ZrSiSe was studied in the near-infrared using transient reflectivity. The materials exhibit similar responses, characterized by two features, well-resolved in time and energy; the first decays after hundreds of femtoseconds, and the second lasts for nanoseconds. Using Drude-Lorentz fits of the materials' equilibrium reflectance, we show that these are well-represented by a sudden change of the electronic properties (increase of screening or reduction of the plasma frequency) followed by an increase of the Drude scattering rate. This directly connects the transient data to a physical picture in which carriers, after excitation into the conduction band, return to the valence band by sharing excess energy with the phonon bath, resulting in a hot lattice that relaxes through slow diffusive processes. The emerging picture reveals that the sudden electronic reorganization instantaneously modifies the materials' electronic properties on a time scale not compatible with electron-phonon thermalization.

SELECTION OF CITATIONS
SEARCH DETAIL