Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(35): e2305037120, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37603740

ABSTRACT

Polo-like kinase 1 (Plk1) is considered an attractive target for anticancer therapy. Over the years, studies on the noncatalytic polo-box domain (PBD) of Plk1 have raised the expectation of generating highly specific protein-protein interaction inhibitors. However, the molecular nature of the canonical PBD-dependent interaction, which requires extensive water network-mediated interactions with its phospholigands, has hampered efforts to identify small molecules suitable for Plk1 PBD drug discovery. Here, we report the identification of the first allosteric inhibitor of Plk1 PBD, called Allopole, a prodrug that can disrupt intracellular interactions between PBD and its cognate phospholigands, delocalize Plk1 from centrosomes and kinetochores, and induce mitotic block and cancer cell killing. At the structural level, its unmasked active form, Allopole-A, bound to a deep Trp-Phe-lined pocket occluded by a latch-like loop, whose adjoining region was required for securely retaining a ligand anchored to the phospho-binding cleft. Allopole-A binding completely dislodged the L2 loop, an event that appeared sufficient to trigger the dissociation of a phospholigand and inhibit PBD-dependent Plk1 function during mitosis. Given Allopole's high specificity and antiproliferative potency, this study is expected to open an unexplored avenue for developing Plk1 PBD-specific anticancer therapeutic agents.


Subject(s)
Cell Cycle Proteins , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Cell Nucleus Division , Polo-Like Kinase 1
2.
Med Chem Res ; 31(2): 207-216, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35492863

ABSTRACT

Phosphoryl prodrugs are key compounds in drug development. Biologically active phosphoryl compounds often have negative charges on the phosphoryl group, and as a result, frequently have poor pharmacokinetic (PK) profiles. The use of lipophilic moieties bonded to the phosphorus (or attached oxygen atoms) masks the negative charge of the phosphoryl group, cleavage releasing the active molecule. The use of prodrugs to improve the PK of active parent molecules is an essential step in drug development. This review highlights promising trends in terminal elimination half-life, Cmax, clearance, oral bioavailability, and cLogP in phosphoryl prodrugs. We focus on specific prodrug families: esters, amidates, and ProTides. We conclude that moderating lipophilicity is a key part of prodrug success. This type of evaluation is important for drug development, regardless of clinical application. It is our hope that this analysis, and future ones like it, will play a significant role in prodrug evolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...