Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 48: 109031, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36969970

ABSTRACT

The main objective of this article is to provide angle-dependent spectral reflectance measurements of various materials in the near infrared spectrum. In contrast to already existing reflectance libraries, e.g., NASA ECOSTRESS and Aster reflectance libraries, which consider only perpendicular reflectance measurements, the presented dataset includes angular resolution of the material reflectance. To conduct the angle-dependent spectral reflectance material measurements, a new measurement device based on a 945 nm time-of-flight camera is used, which was calibrated using Lambertian targets with defined reflectance values at 10, 50, and 95%. The spectral reflectance material measurements are taken for an angle range of 0° to 80° with 10° incremental steps and stored in table format. The developed dataset is categorized with a novel material classification, divided into four different levels of detail considering material properties and distinguishing predominantly between mutually exclusive material classes (level 1) and material types (level 2). The dataset is published open access on the open repository Zenodo with record number 7467552 and version 1.0.1 [1]. Currently, the dataset contains 283 measurements and is continuously extended in new versions on Zenodo.

2.
Eur J Pharm Sci ; 142: 105097, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31648048

ABSTRACT

The objective of this study was to develop a novel closed-loop controlled continuous tablet manufacturing line, which first uses hot melt extrusion (HME) to produce pellets based on API and a polymer matrix. Such systems can be used to make complex pharmaceutical formulations, e.g., amorphous solid dispersions of poorly soluble APIs. The pellets are then fed to a direct compaction (DC) line blended with an external phase and tableted continuously. Fully-automated processing requires advanced control strategies, e.g., for reacting to raw material variations and process events. While many tools have been proposed for in-line process monitoring and real-time data acquisition, establishing real-time automated feedback control based on in-process control strategies remains a challenge. Control loops were implemented to assess the quality attributes of intermediates and product and to coordinate the mass flow rate between the unit operations. Feedback control for the blend concentration, strand temperature and pellet thickness was accomplished via proportional integral derivative (PID) controllers. The tablet press hopper level was controlled using a model predictive controller. To control the mass flow rates in all unit operations, several concepts were developed, with the tablet press, the extruder or none assigned to be the master unit of the line, and compared via the simulation.


Subject(s)
Tablets/chemistry , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Hot Melt Extrusion Technology/methods , Hot Temperature , Polymers/chemistry , Technology, Pharmaceutical/methods
3.
Int J Pharm ; 567: 118457, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31255779

ABSTRACT

Switching from batch to continuous pharmaceutical production offers several advantages, such as an increased productivity, a steady product quality, and decreased costs. This paper presents a control strategy for direct compaction on a continuous tablet production line consisting of two feeders, one blender, and a tablet press (TP). A data-driven, linear modeling approach is applied in order to develop a Smith predictor for active pharmaceutical ingredient concentration control and a model predictive controller responsible for the TP hopper level. Additionally, in case of severe concentration variations out-of-specification material can be discarded before it enters the TP. The effectiveness of the control concept is tested not only in simulations but also by implementing it on a real pilot plant.


Subject(s)
Models, Theoretical , Quality Control , Tablets , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...