Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 375(6582): 770-774, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35175822

ABSTRACT

Lizard tail autotomy is an antipredator strategy consisting of sturdy attachment at regular times but quick detachment during need. We propose a biomimetic fracture model of lizard tail autotomy using multiscale hierarchical structures. The structures consist of uniformly distributed micropillars with nanoporous tops, which recapitulate the high-density mushroom-shaped microstructures found on the lizard tail's muscle fracture plane. The biomimetic experiments showed adhesion enhancement when combining nanoporous interfacial surfaces with flexible micropillars in tensile and peel modes. The fracture modeling identified micro- and nanostructure-based toughening mechanisms as the critical factor. Under wet conditions, capillarity-assisted energy dissipation pertaining to liquid-filled microgaps and nanopores further increased the adhesion performance. This research presents insights on lizard tail autotomy and provides new biomimetic ideas to solve adhesion problems.


Subject(s)
Behavior, Animal , Biomimetics , Lizards/physiology , Models, Biological , Tail/physiology , Adhesiveness , Animals , Biophysical Phenomena , Dimethylpolysiloxanes , Lizards/anatomy & histology , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/physiology , Regeneration , Tail/anatomy & histology
2.
J Anim Ecol ; 91(6): 1163-1179, 2022 06.
Article in English | MEDLINE | ID: mdl-34695234

ABSTRACT

Understanding the genomic basis of adaptation to different abiotic environments is important in the context of climate change and resulting short-term environmental fluctuations. Using functional and comparative genomics approaches, we here investigated whether signatures of genomic adaptation to a set of environmental parameters are concentrated in specific subsets of genes and functions in lacertid lizards and other vertebrates. We first identify 200 genes with signatures of positive diversifying selection from transcriptomes of 24 species of lacertid lizards and demonstrate their involvement in physiological and morphological adaptations to climate. To understand how functionally similar these genes are to previously predicted candidate functions for climate adaptation and to compare them with other vertebrate species, we then performed a meta-analysis of 1,100 genes under selection obtained from -omics studies in vertebrate species adapted to different abiotic factors. We found that the vertebrate gene set formed a tightly connected interactome, which was to 23% enriched in previously predicted functions of adaptation to climate, and to a large part (18%) involved in organismal stress response. We found a much higher degree of identical genes being repeatedly selected among different animal groups (43.6%), and of functional similarity and post-translational modifications than expected by chance, and no clear functional division between genes used for ectotherm and endotherm physiological strategies. In total, 171 out of 200 genes of Lacertidae were part of this network. These results highlight an important role of a comparatively small set of genes and their functions in environmental adaptation and narrow the set of candidate pathways and markers to be used in future research on adaptation and stress response related to climate change.


Subject(s)
Genomics , Lizards , Acclimatization/genetics , Adaptation, Physiological/genetics , Animals , Climate Change , Lizards/genetics , Selection, Genetic
3.
Sci Rep ; 11(1): 4858, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33649347

ABSTRACT

Climate has a large impact on diversity and evolution of the world's biota. The Eocene-Oligocene transition from tropical climate to cooler, drier environments was accompanied by global species turnover. A large number of Old World lacertid lizard lineages have diversified after the Eocene-Oligocene boundary. One of the most speciose reptile genera in the arid Palearctic, Acanthodactylus, contains two sub-Saharan species with unresolved phylogenetic relationship and unknown climatic preferences. We here aim to understand how and when adaptation to arid conditions occurred in Acanthodactylus and when tropical habitats where entered. Using whole mitogenomes from fresh and archival DNA and published sequences we recovered a well-supported Acanthodactylus phylogeny and underpinned the timing of diversification with environmental niche analyses of the sub-Saharan species A. guineensis and A. boueti in comparison to all arid Acanthodactylus. We found that A. guineensis represents an old lineage that splits from a basal node in the Western clade, and A. boueti is a derived lineage and probably not its sister. Their long branches characterize them-and especially A. guineensis-as lineages that may have persisted for a long time without further diversification or have undergone multiple extinctions. Environmental niche models verified the occurrence of A. guineensis and A. boueti in hot humid environments different from the other 42 arid Acanthodactylus species. While A. guineensis probably remained in tropical habitat from periods prior to the Eocene-Oligocene boundary, A. boueti entered tropical environments independently at a later period. Our results provide an important baseline for studying adaptation and the transition from humid to arid environments in Lacertidae.


Subject(s)
Biological Evolution , Genome, Mitochondrial , Lizards/genetics , Phylogeny , Animals , Lizards/classification , Phylogeography , Tropical Climate
4.
Nat Commun ; 10(1): 4077, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31501432

ABSTRACT

Climatic conditions changing over time and space shape the evolution of organisms at multiple levels, including temperate lizards in the family Lacertidae. Here we reconstruct a dated phylogenetic tree of 262 lacertid species based on a supermatrix relying on novel phylogenomic datasets and fossil calibrations. Diversification of lacertids was accompanied by an increasing disparity among occupied bioclimatic niches, especially in the last 10 Ma, during a period of progressive global cooling. Temperate species also underwent a genome-wide slowdown in molecular substitution rates compared to tropical and desert-adapted lacertids. Evaporative water loss and preferred temperature are correlated with bioclimatic parameters, indicating physiological adaptations to climate. Tropical, but also some populations of cool-adapted species experience maximum temperatures close to their preferred temperatures. We hypothesize these species-specific physiological preferences may constitute a handicap to prevail under rapid global warming, and contribute to explaining local lizard extinctions in cool and humid climates.


Subject(s)
Environment , Genetic Variation , Genome , Lizards/genetics , Lizards/physiology , Temperature , Animals , Body Temperature Regulation/physiology , Climate , Evolution, Molecular , Phylogeny
5.
Integr Zool ; 13(4): 450-470, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29436768

ABSTRACT

Determining the susceptibility of species to changing thermal niches is a major goal for biologists. In this paper we develop an eco-physiological model of extinction risk under climate change premised on behavioral thermoregulation. Our method downscales operative environmental temperatures, which restrict hours of activity of lizards, hr , for present-day climate (1975) and future climate scenarios (2070). We apply our model using occurrence records of 20 Phrynocephalus lizards (or taxa in species complexes) drawn from literature and museum records. Our analysis is phylogenetically informed, because some clades may be more sensitive to rising temperatures. The limits for computed hr predict local extirpations among Phrynocephalus lizards at continental scales and delineate upper boundaries of thermal niches as defined by Extreme Value Distributions. Under the 8.5 Representative Concentration Pathway scenario, we predict extirpation of 64% of local populations by 2070 across 20 Phrynocephalus species, and 12 are at high risk of total extinction due to thermal limits being exceeded. In tandem with global strategies of lower CO2 emissions, we propose regional strategies for establishing new national parks to protect extinction-prone taxa by preserving high-elevation climate refugia within existing sites of species occurrence. We propose that evolved acclimatization - maternal plasticity - may ameliorate risk, but is poorly studied. Previous studies revealed that adaptive maternal plasticity by thermoregulating gravid females alter progeny thermal preferences by ±1 °C. We describe plasticity studies for extinction-prone species that could assess whether they might be buffered from climate warming - a self-rescue. We discuss an epigenetic framework for studying such maternal-effect evolution.


Subject(s)
Extinction, Biological , Lizards/physiology , Temperature , Acclimatization , Altitude , Animals , Body Temperature Regulation , Climate Change , Female , Geography , Male , Ovum , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...