Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 21(24): 12730-12747, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31165796

ABSTRACT

Interpreting experimental spectra of thin films of organic semiconductors is challenging, and understanding the relationship between experimental data obtained by different spectroscopic techniques requires a careful consideration of the initial and final states for each process. The discussion of spectroscopic data is frequently mired in confusion that originates in overlapping terminology with however distinct meaning in different spectroscopies. Here, we present a coherent framework that is capable of treating on equal footing most spectroscopies commonly used to investigate thin films of organic semiconductors. We develop a simple model for the expected energy level positions, as obtained by common spectroscopic techniques, and relate them to the energies of molecular states. Molecular charging energies in photoionization processes, as well as adsorption energies and the screening of molecular charges due to environmental polarization, are taken into account as the main causes for shifts of the measured spectroscopic features. We explain the relationship between these quantities, as well as with the transport gap, the optical gap and the exciton binding energy. Our considerations serve as a model for weakly interacting systems, e.g., various organic molecular crystals, where wave function hybridizations between adjacent molecules are negligible.

2.
J Phys Chem C Nanomater Interfaces ; 121(22): 12285-12293, 2017 Jun 08.
Article in English | MEDLINE | ID: mdl-28620448

ABSTRACT

Angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) was measured for one-monolayer coronene films deposited on Ag(111). The (kx ,ky )-dependent photoelectron momentum maps (PMMs), which were extracted from the ARUPS data by cuts at fixed binding energies, show finely structured patterns for the highest and the second-highest occupied molecular orbitals. While the substructure of the PMM main features is related to the 4 × 4 commensurate film structure, various features with three-fold symmetry imply an additional influence of the substrate. PMM simulations on the basis of both free-standing coronene assemblies and coronene monolayers on the Ag(111) substrate confirm a sizable molecule-molecule interaction because no substructure was observed for PMM simulations using free coronene molecules.

3.
Langmuir ; 32(8): 1981-7, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26844381

ABSTRACT

Tetraphenyldibenzoperiflanthene (DBP) is a promising candidate as a component of highly efficient organic photovoltaic cells and organic light-emitting diodes. The structural properties of thin films of this particular lander-type molecule on Ag(111) were investigated by complementary techniques. Highly ordered structures were obtained, and their mutual alignment was characterized by means of low-energy electron diffraction (LEED). Scanning tunneling microscopy (STM) images reveal two slightly different arrangements within the first monolayer (ML), both describable as specific herringbone patterns with two molecules per unit cell whose dibenzoperiflanthene framework is parallel to the surface. In contrast, single DBP molecules in the second ML were imaged with much higher intramolecular resolution, resembling the shape of the frontier orbitals in the gas phase as calculated by means of density functional theory (DFT). Further deposition leads to the growth of highly ordered bilayer islands on top of the first ML with identical unit cell dimensions and orientation but slightly inclined molecules. This suggests that the first ML acts as a template for the epitaxial growth of further layers. Simultaneously, a significant number of second-layer molecules mainly located at step edges or scattered over narrow terraces do not form highly ordered aggregates.

4.
Phys Chem Chem Phys ; 17(45): 30404-16, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26509421

ABSTRACT

Tetraphenyldibenzoperiflanthene (DBP) attracts interest as an organic electron donor for photovoltaic applications. In order to assist in the analysis of vibrational and optical spectra measured during the formation of thin films of DBP, we have studied the vibrational modes and the electronic states of this molecule. Information on the vibrational modes of the electronic ground state has been obtained by IR absorption spectroscopy of DBP grains embedded in polyethylene and CsI pellets and by calculations using density functional theory (DFT). Electronic transitions have been measured by UV/vis absorption spectroscopy applied to DBP molecules isolated in rare-gas matrices. These measurements are compared with the results of ab initio and semi-empirical calculations. Particularly, the vibrational pattern observed in the S1 ← S0 transition is interpreted using a theoretical vibronic spectrum computed with an ab initio model. The results of the previous experiments and calculations are employed to analyze the data obtained by high-resolution electron energy loss spectroscopy (HREELS) applied to DBP molecules deposited on a Au(111) surface. They are also used to examine the measurements performed by differential reflectance spectroscopy (DRS) on DBP molecules deposited on a muscovite mica(0001) surface. It is concluded that the DBP molecules in the first monolayer do not show any obvious degree of chemisorption on mica(0001). Regarding the first monolayer of DBP on Au(111), the HREELS data are consistent with a face-on anchoring and the absence of strong electronic coupling.

SELECTION OF CITATIONS
SEARCH DETAIL
...