Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Infect Dis ; 29(10): 2159-2163, 2023 10.
Article in English | MEDLINE | ID: mdl-37735788

ABSTRACT

Several occurrences of human-to-human transmission of Andes virus, an etiological agent of hantavirus cardiopulmonary syndrome, are documented. Syrian hamsters consistently model human hantavirus cardiopulmonary syndrome, yet neither transmission nor shedding has been investigated. We demonstrate horizontal virus transmission and show that Andes virus is shed efficiently from both inoculated and contact-infected hamsters.


Subject(s)
Orthohantavirus , Animals , Cricetinae , Humans , Mesocricetus , Syndrome
2.
Emerg Microbes Infect ; 11(1): 195-207, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34919035

ABSTRACT

Ebola virus disease (EVD) is a severe and frequently lethal disease caused by Ebola virus (EBOV). The latest occasional EVD outbreak (2013-2016) in Western African, which was accompanied by a high fatality rate, showed the great potential of epidemic and pandemic spread. Antiviral therapies against EBOV are very limited, strain-dependent (only antibody therapies are available) and mostly restricted to symptomatic treatment, illustrating the urgent need for novel antiviral strategies. Thus, we evaluated the effect of the clinically widely used antifungal itraconazole and the antidepressant fluoxetine for a repurposing against EBOV infection. While itraconazole, similar to U18666A, directly binds to and inhibits the endosomal membrane protein Niemann-Pick C1 (NPC1), fluoxetine, which belongs to the structurally unrelated group of weakly basic, amphiphile so-called "functional inhibitors of acid sphingomyelinase" (FIASMA) indirectly acts on the lysosome-residing acid sphingomyelinase via enzyme detachment leading to subsequent lysosomal degradation. Both, the drug-induced endolysosomal cholesterol accumulation and the altered endolysosomal pH, might interfere with the fusion of viral and endolysosomal membrane, preventing infection with EBOV. We further provide evidence that cholesterol imbalance is a conserved cross-species mechanism to hamper EBOV infection. Thus, exploring the endolysosomal host-pathogen interface as a suitable antiviral treatment may offer a general strategy to combat EBOV infection.


Subject(s)
Antiviral Agents/pharmacology , Cholesterol/metabolism , Ebolavirus/drug effects , Endosomes/metabolism , Fluoxetine/pharmacology , Hemorrhagic Fever, Ebola/metabolism , Itraconazole/pharmacology , Ebolavirus/genetics , Ebolavirus/physiology , Endosomes/drug effects , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/virology , Humans , Niemann-Pick C1 Protein/genetics , Niemann-Pick C1 Protein/metabolism , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Virus Internalization/drug effects
3.
Viruses ; 13(2)2021 01 27.
Article in English | MEDLINE | ID: mdl-33513733

ABSTRACT

Laboratory-controlled physiological data for the multimammate rat (Mastomys natalensis) are scarce, despite this species being a known reservoir and vector for zoonotic viruses, including the highly pathogenic Lassa virus, as well as other arenaviruses and many species of bacteria. For this reason, M. natalensis is an important rodent for the study of host-virus interactions within laboratory settings. Herein, we provide basic blood parameters for age- and sex-distributed animals in regards to blood counts, cell phenotypes and serum chemistry of a specific-pathogen-monitored M.natalensis breeding colony, to facilitate scientific insight into this important and widespread rodent species.


Subject(s)
Blood Cell Count/veterinary , Blood Chemical Analysis/veterinary , Hematocrit , Murinae/blood , Animals , Animals, Laboratory , Erythrocyte Count/veterinary , Female , Hemoglobins/analysis , Leukocyte Count/veterinary , Male , Platelet Count/veterinary , Reference Values
4.
Pharmaceutics ; 12(9)2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32899549

ABSTRACT

Due to fast nasal mucociliary clearance, only the dissolved drug content can effectively permeate the mucosa and be pharmaceutically active after intranasal application of suspensions. Therefore, the aim of this study was to increase the budesonide concentration in solution of a nasal spray formulation. Budesonide, a highly water-insoluble corticosteroid, was successfully solubilized using a micellar formulation comprising escin, propylene glycol and dexpanthenol in an aqueous buffered environment ("Budesolv"). A formulation based on this micellar system was well-tolerated in the nasal cavity as shown in a good laboratory practice (GLP) local tolerance study in rabbits. Ex vivo permeation studies into porcine nasal mucosa revealed a faster and more efficient absorption. Budesolv with 300 µg/mL solubilized budesonide resulted in a budesonide concentration of 42 µg/g tissue after only 15 min incubation. In comparison, incubation with the marketed product Rhinocort® aqua 64 (1.28 mg/mL budesonide as suspension) led to 15 µg/g tissue. The in vivo tumor-necrosis-factor (TNF)-α secretion in an acute lung inflammation mouse model was significantly reduced (p < 0.001) following a prophylactic treatment with Budesolv compared to Rhinocort® aqua 64. Successful treatment 15 min after the challenge was only possible with Budesolv (40% reduction of TNF-α, p = 0.0012) suggesting a faster onset of action. The data reveal that solubilization based on saponin micelles presents an opportunity for the development of products containing hardly soluble substances that result in a faster onset and a better topical treatment effect.

5.
Eur J Pharm Biopharm ; 134: 88-95, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30465821

ABSTRACT

Corticosteroids and macrolide immunomodulators such as tacrolimus are effective drugs for the topical treatment of inflammatory eye diseases like allergic conjunctivitis or dry eye. However, tacrolimus is practically insoluble in aqueous solutions and is therefore currently formulated as dispersion. This leads to low bioavailability. Here, we present a novel pharmacologically acceptable, aqueous formulation of tacrolimus based on the "Marinosolv formulation platform". Marinosolv allows the solubilization and thereby improvement of the bioavailability of many otherwise practically insoluble drugs, since dissolved drugs permeate faster into tissues, including ocular tissues. To visualize the benefits of Marinosolv in ophthalmic formulations, we investigated the permeation of a fluorescently labeled estradiol dissolved in Marinosolv compared to a formulation containing the compound as dispersion. Permeation was studied ex-vivo and in-vivo in porcine eyes. Further, we evaluated the improved permeation of topically applied tacrolimus dissolved in Marinosolv compared to a commercially available topically applied tacrolimus dispersion. The Marinosolv formulation was also compared to oral tacrolimus treatment, the standard application route for this drug in case of severe posterior uveitis. Finally, the ocular tissue levels of tacrolimus in all groups were determined using HPLC/MS. We demonstrated that tacrolimus dissolved in Marinosolv reached significantly higher levels in ocular tissues compared to the marketed topical product or after oral application and thus may be a suitable novel option for the treatment of several eye diseases, such as allergic conjunctivitis or uveitis. Thus, Marinosolv may be considered as a new vehicle for tacrolimus eye drops.


Subject(s)
Drug Compounding/methods , Immunosuppressive Agents/pharmacokinetics , Ophthalmic Solutions/pharmacokinetics , Tacrolimus/pharmacokinetics , Uveitis/drug therapy , Administration, Ophthalmic , Administration, Oral , Animals , Biological Availability , Drug Evaluation, Preclinical , Excipients/chemistry , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/chemistry , Models, Animal , Ophthalmic Solutions/administration & dosage , Solubility , Sus scrofa , Tacrolimus/administration & dosage , Tacrolimus/chemistry , Uveitis/immunology , Water/chemistry
6.
PLoS One ; 10(6): e0128794, 2015.
Article in English | MEDLINE | ID: mdl-26053018

ABSTRACT

BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.


Subject(s)
Carrageenan/administration & dosage , Carrageenan/therapeutic use , Influenza A virus/drug effects , Orthomyxoviridae Infections/drug therapy , Zanamivir/administration & dosage , Zanamivir/therapeutic use , Administration, Intranasal , Animals , Antiviral Agents/therapeutic use , Carrageenan/pharmacology , Disease Models, Animal , Dogs , Humans , Influenza A Virus, H7N7 Subtype/drug effects , Inhibitory Concentration 50 , Madin Darby Canine Kidney Cells , Mice , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Treatment Outcome , Zanamivir/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...