Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Protein Expr Purif ; 183: 105861, 2021 07.
Article in English | MEDLINE | ID: mdl-33667651

ABSTRACT

Sensitive and specific serology tests are essential for epidemiological and public health studies of COVID-19 and for vaccine efficacy testing. The presence of antibodies to SARS-CoV-2 surface glycoprotein (Spike) and, specifically, its receptor-binding domain (RBD) correlates with inhibition of SARS-CoV-2 binding to the cellular receptor and viral entry into the cells. Serology tests that detect antibodies targeting RBD have high potential to predict COVID-19 immunity and to accurately determine the extent of the vaccine-induced immune response. Cost-effective methods of expression and purification of Spike and its fragments that preserve antigenic properties are essential for development of such tests. Here we describe a method of production of His6-tagged S319-640 fragment containing RBD in E. coli. It includes expression of the fragment, solubilization of inclusion bodies, and on-the-column refolding. The antigenic properties of the resulting product are similar, but not identical to the RBD-containing fragment expressed in human cells.


Subject(s)
COVID-19/virology , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Binding Sites , Cloning, Molecular , Escherichia coli/chemistry , Escherichia coli/genetics , Gene Expression , Humans , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/isolation & purification , Protein Domains , Protein Refolding , SARS-CoV-2/genetics , Solubility , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification
2.
J Mol Biol ; 431(14): 2528-2542, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31029704

ABSTRACT

RNA polymerase can cleave a phosphodiester bond at the 3' end of a nascent RNA in the presence of pyrophosphate producing NTP. Pyrophosphorolysis has been characterized during elongation steps of transcription where its rate is significantly slower than the forward rate of NMP addition. In contrast, we report here that pyrophosphorolysis can occur in a millisecond time scale during the transition of Escherichia coli RNA polymerase from initiation to elongation at the psbA2 promoter. This rapid pyrophosphorolysis occurs during productive RNA synthesis as opposed to abortive RNA synthesis. Dissociation of σ70 or RNA extension beyond nine nucleotides dramatically reduces the rate of pyrophosphorolysis. We argue that the rapid pyrophosphorolysis allows iterative cycles of cleavage and re-synthesis of the 3' phosphodiester bond by the productive complexes in the early stage of transcription. This iterative process may provide an opportunity for the σ70 to dissociate from the RNA exit channel of the enzyme, enabling RNA to extend through the channel.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Diphosphates/metabolism , Escherichia coli/enzymology , RNA, Bacterial/genetics , Sigma Factor/metabolism , Transcription, Genetic , DNA-Directed RNA Polymerases/genetics , Phosphorylation , Promoter Regions, Genetic , Sigma Factor/genetics
3.
Methods Mol Biol ; 1632: 91-105, 2017.
Article in English | MEDLINE | ID: mdl-28730434

ABSTRACT

RNA nanoparticles consisting of multiple RNA strands of different sequences forming various three-dimensional structures emerge as promising carriers of siRNAs, RNA aptamers, and ribozymes. In vitro transcription of a mixture of dsDNA templates encoding all the subunits of the RNA nanoparticle may result in cotranscriptional self-assembly of the nanoparticle. Based on our experience with production of RNA nanorings, RNA nanocubes, and RNA three-way junctions, we propose a strategy for optimization of the cotranscriptional production of chemically modified ribonuclease-resistant RNA nanoparticles.


Subject(s)
Nanoparticles , RNA/chemistry , RNA/genetics , Transcription, Genetic , 5' Untranslated Regions , Base Sequence , Halogenation , Mutation
4.
Genetics ; 206(1): 179-187, 2017 05.
Article in English | MEDLINE | ID: mdl-28341651

ABSTRACT

We made a coupled genetic reporter that detects rare transcription misincorporation errors to measure RNA polymerase transcription fidelity in Escherichia coli Using this reporter, we demonstrated in vivo that the transcript cleavage factor GreA, but not GreB, is essential for proofreading of a transcription error where a riboA has been misincorporated instead of a riboG. A greA mutant strain had more than a 100-fold increase in transcription errors relative to wild-type or a greB mutant. However, overexpression of GreB in ΔgreA cells reduced the misincorporation errors to wild-type levels, demonstrating that GreB at high concentration could substitute for GreA in RNA proofreading activity in vivo.


Subject(s)
Escherichia coli Proteins/genetics , Genes, Reporter/genetics , Transcription Factors/genetics , Transcription, Genetic , Transcriptional Elongation Factors/genetics , DNA-Directed RNA Polymerases/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Peptide Elongation Factors , Promoter Regions, Genetic , RNA/biosynthesis , RNA/genetics
5.
Protein Expr Purif ; 134: 1-10, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28323168

ABSTRACT

Recent publications have shown that active RNA polymerase (RNAP) from Mycobacterium tuberculosis (MtbRNAP) can be produced by expressing all four subunits in a single recombinant Escherichia coli strain [1-3]. By reducing the number of plasmids and changing the codon usage of the Mtb genes in the co-expression system published by Banerjee et al. [1], we present a simplified, detailed and reproducible protocol for the purification of recombinant MtbRNAP containing the ω subunit. Moreover, we describe the formation of ternary elongation complexes (TECs) with a short fluorescence-labeled RNA primer and DNA oligonucleotides, suitable for transcription elongation studies. The purification of milligram quantities of the pure and highly active holoenzyme omits ammonium sulfate or polyethylene imine precipitation steps [4] and requires only 5 g of wet cells. Our results indicate that subunit assemblies other than α2ßß'ω·σA can be separated by ion-exchange chromatography on Mono Q column and that assemblies with the wrong RNAP subunit stoichiometry lack transcriptional activity. We show that MtbRNAP TECs can be stalled by NTP substrate deprivation and chased upon the addition of missing NTP(s) without the need of any accessory proteins. Finally, we demonstrate the ability of the purified MtbRNAP to initiate transcription from a promoter and establish that its open promoter complexes are stabilized by the M. tuberculosis protein CarD.


Subject(s)
Bacterial Proteins , DNA-Directed RNA Polymerases , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Promoter Regions, Genetic , Transcription, Genetic , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , DNA-Directed RNA Polymerases/biosynthesis , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Holoenzymes/biosynthesis , Holoenzymes/chemistry , Holoenzymes/genetics , Holoenzymes/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
6.
Proc Natl Acad Sci U S A ; 112(16): E1984-93, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25848054

ABSTRACT

Escherichia coli and yeast DNA-dependent RNA polymerases are shown to mediate efficient nascent transcript stem loop formation-dependent RNA-DNA hybrid realignment. The realignment was discovered on the heteropolymeric sequence T5C5 and yields transcripts lacking a C residue within a corresponding U5C4. The sequence studied is derived from a Roseiflexus insertion sequence (IS) element where the resulting transcriptional slippage is required for transposase synthesis. The stability of the RNA structure, the proximity of the stem loop to the slippage site, the length and composition of the slippage site motif, and the identity of its 3' adjacent nucleotides (nt) are crucial for transcripts lacking a single C. In many respects, the RNA structure requirements for this slippage resemble those for hairpin-dependent transcription termination. In a purified in vitro system, the slippage efficiency ranges from 5% to 75% depending on the concentration ratios of the nucleotides specified by the slippage sequence and the 3' nt context. The only previous proposal of stem loop mediated slippage, which was in Ebola virus expression, was based on incorrect data interpretation. We propose a mechanical slippage model involving the RNAP translocation state as the main motor in slippage directionality and efficiency. It is distinct from previously described models, including the one proposed for paramyxovirus, where following random movement efficiency is mainly dependent on the stability of the new realigned hybrid. In broadening the scope for utilization of transcription slippage for gene expression, the stimulatory structure provides parallels with programmed ribosomal frameshifting at the translation level.


Subject(s)
Nucleic Acid Conformation , RNA, Messenger/chemistry , Terminator Regions, Genetic , Transcription, Genetic , Amino Acid Sequence , Base Sequence , Chloroflexi/genetics , DNA-Directed RNA Polymerases/metabolism , Molecular Sequence Data , Nucleotide Motifs/genetics , RNA, Messenger/genetics , Saccharomyces cerevisiae/genetics , Sequence Inversion
7.
Methods Mol Biol ; 1276: 153-64, 2015.
Article in English | MEDLINE | ID: mdl-25665562

ABSTRACT

Accurate transcription is essential for faithful information flow from DNA to RNA and to the protein. Mechanisms of cognate substrate selection by RNA polymerases are currently elucidated by structural, genetic, and biochemical approaches. Here, we describe a fast and reliable approach to quantitative analyses of transcription fidelity, applicable to analyses of RNA polymerase selectivity against misincorporation, incorporation of dNMPs, and chemically modified rNMP analogues. The method is based on different electrophoretic mobility of RNA oligomers of the same length but differing in sequence.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Molecular Biology/methods , Multiprotein Complexes/metabolism , Transcription, Genetic/physiology , Transcriptional Elongation Factors/metabolism , Electrophoretic Mobility Shift Assay , Substrate Specificity , Transcription, Genetic/genetics
8.
PLoS Genet ; 10(9): e1004532, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25232834

ABSTRACT

We developed a highly sensitive assay to detect transcription errors in vivo. The assay is based on suppression of a missense mutation in the active site tyrosine in the Cre recombinase. Because Cre acts as tetramer, background from translation errors are negligible. Functional Cre resulting from rare transcription errors that restore the tyrosine codon can be detected by Cre-dependent rearrangement of reporter genes. Hence, transient transcription errors are captured as stable genetic changes. We used this Cre-based reporter to screen for mutations of Saccharomyces cerevisiae RPB1 (RPO21) that increase the level of misincorporation during transcription. The mutations are in three domains of Rpb1, the trigger loop, the bridge helix, and in sites involved in binding to TFIIS. Biochemical characterization demonstrates that these variants have elevated misincorporation, and/or ability to extend mispaired bases, or defects in TFIIS mediated editing.


Subject(s)
RNA Polymerase II/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Transcription, Genetic/genetics , Amino Acid Sequence , Catalytic Domain/genetics , Codon/genetics , Gene Expression Regulation, Fungal/genetics , Genes, Reporter/genetics , Molecular Sequence Data , Mutation/genetics
9.
Proc Natl Acad Sci U S A ; 111(23): E2368-75, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24853501

ABSTRACT

The Nun protein of coliphage HK022 arrests RNA polymerase (RNAP) in vivo and in vitro at pause sites distal to phage λ N-Utilization (nut) site RNA sequences. We tested the activity of Nun on ternary elongation complexes (TECs) assembled with templates lacking the λ nut sequence. We report that Nun stabilizes both translocation states of RNAP by restricting lateral movement of TEC along the DNA register. When Nun stabilized TEC in a pretranslocated register, immediately after NMP incorporation, it prevented binding of the next NTP and stimulated pyrophosphorolysis of the nascent transcript. In contrast, stabilization of TEC by Nun in a posttranslocated register allowed NTP binding and nucleotidyl transfer but inhibited pyrophosphorolysis and the next round of forward translocation. Nun binding to and action on the TEC requires a 9-bp RNA-DNA hybrid. We observed a Nun-dependent toe print upstream to the TEC. In addition, mutations in the RNAP ß' subunit near the upstream end of the transcription bubble suppress Nun binding and arrest. These results suggest that Nun interacts with RNAP near the 5' edge of the RNA-DNA hybrid. By stabilizing translocation states through restriction of TEC lateral mobility, Nun represents a novel class of transcription arrest factors.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Transcription Elongation, Genetic , Transcription Factors/metabolism , Viral Proteins/metabolism , Bacteriophage lambda/genetics , Bacteriophage lambda/metabolism , DNA, Viral/chemistry , DNA, Viral/genetics , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Diphosphates/metabolism , Models, Genetic , Models, Molecular , Mutation , Nucleic Acid Conformation , Nucleotides/genetics , Nucleotides/metabolism , Protein Binding , Protein Structure, Tertiary , RNA, Viral/chemistry , RNA, Viral/genetics , Templates, Genetic , Transcription Factors/chemistry , Transcription Factors/genetics , Viral Proteins/chemistry , Viral Proteins/genetics
10.
Nucleic Acids Res ; 42(3): 2085-97, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24194608

ABSTRACT

Control over the simultaneous delivery of different functionalities and their synchronized intracellular activation can greatly benefit the fields of RNA and DNA biomedical nanotechnologies and allow for the production of nanoparticles and various switching devices with controllable functions. We present a system of multiple split functionalities embedded in the cognate pairs of RNA-DNA hybrids which are programmed to recognize each other, re-associate and form a DNA duplex while also releasing the split RNA fragments which upon association regain their original functions. Simultaneous activation of three different functionalities (RNAi, Förster resonance energy transfer and RNA aptamer) confirmed by multiple in vitro and cell culture experiments prove the concept. To automate the design process, a novel computational tool that differentiates between the thermodynamic stabilities of RNA-RNA, RNA-DNA and DNA-DNA duplexes was developed. Moreover, here we demonstrate that besides being easily produced by annealing synthetic RNAs and DNAs, the individual hybrids carrying longer RNAs can be produced by RNA polymerase II-dependent transcription of single-stranded DNA templates.


Subject(s)
DNA/chemistry , RNA/chemistry , Aptamers, Nucleotide/chemistry , Cell Line, Tumor , Fluorescence Resonance Energy Transfer , Humans , Models, Molecular , RNA Interference , RNA Polymerase II/metabolism , Thermodynamics , Transcription, Genetic
12.
Elife ; 2: e00971, 2013 Sep 24.
Article in English | MEDLINE | ID: mdl-24066225

ABSTRACT

During transcription elongation, RNA polymerase has been assumed to attain equilibrium between pre- and post-translocated states rapidly relative to the subsequent catalysis. Under this assumption, recent single-molecule studies proposed a branched Brownian ratchet mechanism that necessitates a putative secondary nucleotide binding site on the enzyme. By challenging individual yeast RNA polymerase II with a nucleosomal barrier, we separately measured the forward and reverse translocation rates. Surprisingly, we found that the forward translocation rate is comparable to the catalysis rate. This finding reveals a linear, non-branched ratchet mechanism for the nucleotide addition cycle in which translocation is one of the rate-limiting steps. We further determined all the major on- and off-pathway kinetic parameters in the elongation cycle. The resulting translocation energy landscape shows that the off-pathway states are favored thermodynamically but not kinetically over the on-pathway states, conferring the enzyme its propensity to pause and furnishing the physical basis for transcriptional regulation. DOI:http://dx.doi.org/10.7554/eLife.00971.001.


Subject(s)
RNA Polymerase II/metabolism , Transcription, Genetic , Kinetics , Models, Theoretical , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics
13.
Biochim Biophys Acta ; 1829(2): 187-98, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23202476

ABSTRACT

The bridge α-helix in the ß' subunit of RNA polymerase (RNAP) borders the active site and may have roles in catalysis and translocation. In Escherichia coli RNAP, a bulky hydrophobic segment near the N-terminal end of the bridge helix is identified (ß' 772-YFI-774; the YFI motif). YFI is located at a distance from the active center and adjacent to a glycine hinge (ß' 778-GARKG-782) involved in dynamic bending of the bridge helix. Remarkably, amino acid substitutions in YFI significantly alter intrinsic termination, pausing, fidelity and translocation of RNAP. F773V RNAP largely ignores the λ tR2 terminator at 200µM NTPs and is strongly reduced in λ tR2 recognition at 1µM NTPs. F773V alters RNAP pausing and backtracking and favors misincorporation. By contrast, the adjacent Y772A substitution increases fidelity and exhibits other transcriptional defects generally opposite to those of F773V. All atom molecular dynamics simulation revealed two separate functional connections emanating from YFI explaining the distinct effects of substitutions: Y772 communicates with the active site through the link domain in the ß subunit, whereas F773 communicates through the fork domain in the ß subunit. I774 interacts with the F-loop, which also contacts the glycine hinge of the bridge helix. These results identified negative and positive circuits coupled at YFI and employed for regulation of catalysis, elongation, termination and translocation.


Subject(s)
Amino Acid Motifs , Catalysis , DNA-Directed RNA Polymerases/chemistry , Escherichia coli/enzymology , Amino Acid Sequence , Binding Sites , Catalytic Domain , DNA-Directed RNA Polymerases/metabolism , Kinetics , Molecular Dynamics Simulation , Molecular Sequence Data , Mutagenesis , Protein Conformation , Protein Structure, Secondary
14.
J Mol Biol ; 425(4): 697-712, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23238253

ABSTRACT

Pausing of RNA polymerase II (RNAP II) by backtracking on DNA is a major regulatory mechanism in control of eukaryotic transcription. Backtracking occurs by extrusion of the 3' end of the RNA from the active center after bond formation and before translocation of RNAP II on DNA. In several documented cases, backtracking requires a special signal such as A/T-rich sequences forming an unstable RNA-DNA hybrid in the elongation complex. However, other sequence-dependent backtracking signals and conformations of RNAP II leading to backtracking remain unknown. Here, we demonstrate with S. cerevisiae RNAP II that a cleavage-deficient elongation factor TFIIS (TFIIS(AA)) enhances backtracked pauses during regular transcription. This is due to increased efficiency of formation of an intermediate that leads to backtracking. This intermediate may involve misalignment at the 3' end of the nascent RNA in the active center of the yeast RNAP II, and TFIIS(AA) promotes formation of this intermediate at the DNA sequences, presenting a high-energy barrier to translocation. We proposed a three-step mechanism for RNAP II pausing in which a prolonged dwell time in the pre-translocated state increases the likelihood of the 3' RNA end misalignment facilitating a backtrack pausing. These results demonstrate an important role of the intrinsic blocks to forward translocation in pausing by RNAP II.


Subject(s)
RNA Polymerase II/metabolism , RNA, Fungal/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic , Base Sequence , DNA, Fungal/chemistry , DNA, Fungal/genetics , Kinetics , Models, Genetic , Mutation , Protein Transport , RNA Polymerase II/genetics , RNA, Fungal/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
15.
PLoS Pathog ; 8(11): e1003030, 2012.
Article in English | MEDLINE | ID: mdl-23166498

ABSTRACT

Ribonucleoside analogues have potential utility as anti-viral, -parasitic, -bacterial and -cancer agents. However, their clinical applications have been limited by off target effects. Development of antiviral ribonucleosides for treatment of hepatitis C virus (HCV) infection has been hampered by appearance of toxicity during clinical trials that evaded detection during preclinical studies. It is well established that the human mitochondrial DNA polymerase is an off target for deoxyribonucleoside reverse transcriptase inhibitors. Here we test the hypothesis that triphosphorylated metabolites of therapeutic ribonucleoside analogues are substrates for cellular RNA polymerases. We have used ribonucleoside analogues with activity against HCV as model compounds for therapeutic ribonucleosides. We have included ribonucleoside analogues containing 2'-C-methyl, 4'-methyl and 4'-azido substituents that are non-obligate chain terminators of the HCV RNA polymerase. We show that all of the anti-HCV ribonucleoside analogues are substrates for human mitochondrial RNA polymerase (POLRMT) and eukaryotic core RNA polymerase II (Pol II) in vitro. Unexpectedly, analogues containing 2'-C-methyl, 4'-methyl and 4'-azido substituents were inhibitors of POLRMT and Pol II. Importantly, the proofreading activity of TFIIS was capable of excising these analogues from Pol II transcripts. Evaluation of transcription in cells confirmed sensitivity of POLRMT to antiviral ribonucleosides, while Pol II remained predominantly refractory. We introduce a parameter termed the mitovir (mitochondrial dysfunction caused by antiviral ribonucleoside) score that can be readily obtained during preclinical studies that quantifies the mitochondrial toxicity potential of compounds. We suggest the possibility that patients exhibiting adverse effects during clinical trials may be more susceptible to damage by nucleoside analogs because of defects in mitochondrial or nuclear transcription. The paradigm reported here should facilitate development of ribonucleosides with a lower potential for toxicity.


Subject(s)
Antiviral Agents/pharmacology , Cell Nucleus/metabolism , DNA-Directed RNA Polymerases/metabolism , Hepacivirus/metabolism , Mitochondria/metabolism , RNA Polymerase II/metabolism , Ribonucleosides/pharmacology , Transcription, Genetic/drug effects , Animals , Antiviral Agents/adverse effects , Cattle , Cell Line , Hepatitis C/drug therapy , Hepatitis C/enzymology , RNA, Viral/biosynthesis , Ribonucleosides/adverse effects
16.
BMC Biophys ; 5: 11, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22676913

ABSTRACT

BACKGROUND: During elongation, multi-subunit RNA polymerases (RNAPs) cycle between phosphodiester bond formation and nucleic acid translocation. In the conformation associated with catalysis, the mobile "trigger loop" of the catalytic subunit closes on the nucleoside triphosphate (NTP) substrate. Closing of the trigger loop is expected to exclude water from the active site, and dehydration may contribute to catalysis and fidelity. In the absence of a NTP substrate in the active site, the trigger loop opens, which may enable translocation. Another notable structural element of the RNAP catalytic center is the "bridge helix" that separates the active site from downstream DNA. The bridge helix may participate in translocation by bending against the RNA/DNA hybrid to induce RNAP forward movement and to vacate the active site for the next NTP loading. The transition between catalytic and translocation conformations of RNAP is not evident from static crystallographic snapshots in which macromolecular motions may be restrained by crystal packing. RESULTS: All atom molecular dynamics simulations of Thermus thermophilus (Tt) RNAP reveal flexible hinges, located within the two helices at the base of the trigger loop, and two glycine hinges clustered near the N-terminal end of the bridge helix. As simulation progresses, these hinges adopt distinct conformations in the closed and open trigger loop structures. A number of residues (described as "switch" residues) trade atomic contacts (ion pairs or hydrogen bonds) in response to changes in hinge orientation. In vivo phenotypes and in vitro activities rendered by mutations in the hinge and switch residues in Saccharomyces cerevisiae (Sc) RNAP II support the importance of conformational changes predicted from simulations in catalysis and translocation. During simulation, the elongation complex with an open trigger loop spontaneously translocates forward relative to the elongation complex with a closed trigger loop. CONCLUSIONS: Switching between catalytic and translocating RNAP forms involves closing and opening of the trigger loop and long-range conformational changes in the atomic contacts of amino acid side chains, some located at a considerable distance from the trigger loop and active site. Trigger loop closing appears to support chemistry and the fidelity of RNA synthesis. Trigger loop opening and limited bridge helix bending appears to promote forward nucleic acid translocation.

17.
Mol Cell ; 46(1): 18-29, 2012 Apr 13.
Article in English | MEDLINE | ID: mdl-22405652

ABSTRACT

UV-induced cyclobutane pyrimidine dimers (CPDs) in the template DNA strand stall transcription elongation by RNA polymerase II (Pol II). If the nucleotide excision repair machinery does not promptly remove the CPDs, stalled Pol II creates a roadblock for DNA replication and subsequent rounds of transcription. Here we present evidence that Pol II has an intrinsic capacity for translesion synthesis (TLS) that enables bypass of the CPD with or without repair. Translesion synthesis depends on the trigger loop and bridge helix, the two flexible regions of the Pol II subunit Rpb1 that participate in substrate binding, catalysis, and translocation. Substitutions in Rpb1 that promote lesion bypass in vitro increase UV resistance in vivo, and substitutions that inhibit lesion bypass decrease cell survival after UV irradiation. Thus, translesion transcription becomes essential for cell survival upon accumulation of the unrepaired CPD lesions in genomic DNA.


Subject(s)
DNA Damage/radiation effects , Pyrimidine Dimers/metabolism , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Transcription, Genetic/radiation effects , Ultraviolet Rays/adverse effects , DNA Replication/genetics , DNA Replication/radiation effects , DNA, Fungal/biosynthesis , DNA, Fungal/genetics , Genome, Fungal/physiology , Pyrimidine Dimers/genetics , RNA Polymerase II/genetics , Radiation Tolerance/genetics , Radiation Tolerance/radiation effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription, Genetic/genetics
18.
J Biol Chem ; 286(35): 30898-30910, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21730074

ABSTRACT

Fork loop 2 is a small semiconservative segment of the larger fork domain in the second largest Rpb2 subunit of RNA polymerase II (Pol II). This flexible loop, juxtaposed at the leading edge of transcription bubble, has been proposed to participate in DNA strand separation, translocation along DNA, and NTP loading to Pol II during elongation. Here we show that the Rpb2 mutant carrying a deletion of the flexible part of the loop is not lethal in yeast. The mutation exhibits no defects in DNA melting and translocation in vitro but confers a moderate decrease of the catalytic activity of the enzyme caused by the impaired sequestration of the NTP substrate in the active center prior to catalysis. In the structural model of the Pol II elongation complex, fork loop 2 directly interacts with an unpaired DNA residue in the non-template DNA strand one nucleotide ahead from the active center (the i+2 position). We showed that elimination of this putative interaction by replacement of the i+2 residue with an abasic site inhibits Pol II activity to the same degree as the deletion of fork loop 2. This replacement has no detectable effect on the activity of the mutant enzyme. We provide direct evidence that interaction of fork loop 2 with the non-template DNA strand facilitates NTP sequestration through interaction with the adjacent segment of the fork domain involved in the active center of Pol II.


Subject(s)
RNA Polymerase II/chemistry , Thermus thermophilus/enzymology , Transcription, Genetic , Amino Acid Sequence , Animals , Catalysis , Catalytic Domain , Cattle , DNA/metabolism , Exodeoxyribonucleases/chemistry , Models, Molecular , Molecular Sequence Data , Mutation , Potassium Permanganate/chemistry , Protein Binding , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/metabolism
19.
Nat Struct Mol Biol ; 17(6): 745-52, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20453861

ABSTRACT

During gene expression, RNA polymerase (RNAP) encounters a major barrier at a nucleosome and yet must access the nucleosomal DNA. Previous in vivo evidence has suggested that multiple RNAPs might increase transcription efficiency through nucleosomes. Here we have quantitatively investigated this hypothesis using Escherichia coli RNAP as a model system by directly monitoring its location on the DNA via a single-molecule DNA-unzipping technique. When an RNAP encountered a nucleosome, it paused with a distinctive 10-base pair periodicity and backtracked by approximately 10-15 base pairs. When two RNAPs elongate in close proximity, the trailing RNAP apparently assists in the leading RNAP's elongation, reducing its backtracking and enhancing its transcription through a nucleosome by a factor of 5. Taken together, our data indicate that histone-DNA interactions dictate RNAP pausing behavior, and alleviation of nucleosome-induced backtracking by multiple polymerases may prove to be a mechanism for overcoming the nucleosomal barrier in vivo.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Nucleosomes/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Histones/metabolism , Models, Biological , RNA Polymerase II/metabolism , Transcription, Genetic
20.
Proc Natl Acad Sci U S A ; 106(22): 8900-5, 2009 Jun 02.
Article in English | MEDLINE | ID: mdl-19416863

ABSTRACT

Sequence-specific pausing of multisubunit RNA polymerases (RNAPs) represents a rate-limiting step during transcription elongation. Pausing occurs on average every 100 bases of DNA. Several models have been proposed to explain pausing, including backtracking of the ternary elongation complex, delay of translocation of the enzyme along DNA, or a conformational change in the active site preventing formation of the phosphodiester bond. Here, we performed biochemical characterization of previously-reported pauses of Escherichia coli RNAP and found that they are not associated with backtracking or a translocation delay. Instead, the paused complex contains the 3' end of the transcript in the active center and is capable of binding the next cognate NTP. However, bond formation occurs much slower in the paused complex compared with its fully-active counterpart. The pausing is dramatically decreased by a substitution of the base encoding the next incoming NTP and the base encoding the 3' end of the nascent RNA, suggesting that (mis)-alignment of the 3' end of the RNA and the incoming NTP in the active site is crucial for pausing. These pause sites are conserved between E. coli and Thermus thermophilus RNAPs, but are not recognized by Saccharomyces cerevisiae RNAP II, indicating that prokaryotic RNAPs might be more sensitive to the changes in the alignment of the nascent transcript and the substrate NTP in the active site.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , DNA/metabolism , Escherichia coli/enzymology , RNA, Messenger/biosynthesis , Transcription, Genetic , Bacteriophage T7/genetics , Base Sequence , Catalytic Domain , Conserved Sequence , DNA/chemistry , DNA-Directed RNA Polymerases/chemistry , Escherichia coli/genetics , Nucleotides/chemistry , Nucleotides/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...