Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Ergon ; 77: 50-57, 2019 May.
Article in English | MEDLINE | ID: mdl-30832778

ABSTRACT

Applied ergonomics research examines not only the fit, form and function of military uniforms, but also their ability to effectively camouflage personnel as they perform job-related tasks. Many of these job-related tasks involve moving through environments, but existing literature examining camouflage effectiveness often assumes that movement effectively "breaks" even the best camouflage patterns, rendering them of limited utility for reducing the visual signature of a moving target. However, recent research demonstrates that animals equipped with adaptive camouflage change their patterning in predictable ways during movement and this adaptation decreases detectability, suggesting that uniform patterning may still hold value for reducing conspicuity during movement. The present experiment examined whether three visual pattern characteristics, local contrast, orientation, and spatial frequency, would influence the detectability of a moving human target. Participants attempted to detect and localize a simulated human target moving across a background scene, and a factorial design varied target movement speed, and the local contrast, spatial frequency, and orientation of its camouflage patterning. Results showed that target detectability was strongly influenced by target movement rate, pattern local contrast, and pattern spatial frequency, and these effects persisted even under conditions of very fast movement. Importantly, we found that the effect of local contrast was most robust under conditions of movement, suggesting its importance for reducing detectability of moving personnel. We conclude that movement is not always sufficient to break the concealment offered by a pattern with low contrast and a spatial frequency match with its background. Results are discussed in the context of visual processing theories and the application of these findings to the design and development of static and adaptive camouflage patterns for military personnel.


Subject(s)
Clothing/psychology , Military Personnel/psychology , Motion Perception , Pattern Recognition, Visual , Biological Mimicry , Female , Humans , Male , Movement , Walking Speed , Young Adult
2.
Appl Ergon ; 73: 1-6, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30098624

ABSTRACT

Target visual salience and biological motion independently influence the accuracy and latency of observer detection. However, it is currently unknown how these target parameters might interact in modulating the detectability of camouflaged human targets. In two experiments, observers performed a visual target detection task. In a pilot experiment, observers detected a static human target with parametrically varied visual salience, superimposed on a complex background scene. As expected, results demonstrated varied target detectability as a function of salience, with observers showing higher hit rates and faster response times as a function of increased salience. In the Main Experiment, observers detected simulated human targets walking across a complex scene at five different speeds and three different levels of visual salience (as validated in the pilot experiment). We found strong effects of both movement rate and visual salience, and the two parameters interacted. Specifically, increasing the rate of biological motion increased detectability for even the least salient camouflage patterns. In other words, biological motion can "break" even the least conspicuous camouflage pattern. In contrast, a very salient pattern was highly detectable under static and moving conditions. Results are considered in relation to theories of camouflage detectability, and trade-offs between camouflage development efforts versus advanced training in military maneuvering.


Subject(s)
Movement , Pattern Recognition, Visual , Visual Perception , Adolescent , Adult , Female , Humans , Male , Motion Perception , Reaction Time , Task Performance and Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...