Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(35): 41373-41384, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37615185

ABSTRACT

Counterfeit products in the pharmaceutical and food industries have posed an overwhelmingly increasing threat to the health of individuals and societies. An effective approach to prevent counterfeiting is the attachment of security labels directly on drugs and food products. This approach requires the development of security labels composed of safely digestible materials. In this study, we present the fabrication of security labels entirely based on the use of food-grade materials. The key idea proposed in this study is the exploitation of food-grade corn starch (CS) as an encoding material based on the microscopic dimensions, particulate structure, and adsorbent characteristics. The strong adsorption of a food colorant, erythrosine B (ErB), onto CS results in fluorescent CS@ErB microparticles. Randomly positioned CS@ErB particles can be obtained simply by spin-coating from aqueous solutions of tuned concentrations followed by transfer to an edible gelatin film. The optical and fluorescence microscopy images of randomly positioned particles are then used to construct keys for a physically unclonable function (PUF)-based security label. The performance of PUFs evaluated by uniformity, uniqueness, and randomness analysis demonstrates the strong promise of this platform. The biocompatibility of the fabricated PUFs is confirmed with assays using murine fibroblast cells. The extremely low-cost and sustainable security primitives fabricated from off-the-shelf food materials offer new routes in the fight against counterfeiting.


Subject(s)
Cell-Derived Microparticles , Dust , Humans , Animals , Mice , Adsorption , Biological Assay , Coloring Agents , Erythrosine
2.
ACS Appl Mater Interfaces ; 13(4): 5678-5690, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33492946

ABSTRACT

The COVID-19 pandemic has clearly shown the importance of developments in fabrication of advanced protective equipment. This study investigates the potential of using multifunctional electrospun poly(methyl methacrylate) (PMMA) nanofibers decorated with ZnO nanorods and Ag nanoparticles (PMMA/ZnO-Ag NFs) in protective mats. Herein, the PMMA/ZnO-Ag NFs with an average diameter of 450 nm were simply prepared on a nonwoven fabric by directly electrospinning from solutions containing PMMA, ZnO nanorods, and Ag nanoparticles. The novel material showed high performance with four functionalities (i) antibacterial agent for killing of Gram-negative and Gram-positive bacteria, (ii) antiviral agent for inhibition of corona and influenza viruses, (iii) photocatalyst for degradation of organic pollutants, enabling a self-cleaning protective mat, and (iv) reusable surface-enhanced Raman scattering substrate for quantitative analysis of trace pollutants on the nanofiber. This multi-functional material has high potential for use in protective clothing applications by providing passive and active protection pathways together with sensing capabilities.


Subject(s)
Anti-Infective Agents/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Zinc Oxide/chemistry , Anti-Bacterial Agents/chemistry , Antiviral Agents/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Nanofibers/chemistry , Nanotubes/chemistry , Polymethyl Methacrylate/chemistry , Spectrum Analysis, Raman
3.
Ecotoxicol Environ Saf ; 188: 109856, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31722800

ABSTRACT

In this study, we reported the design and the fabrication of Ag and TiO2 modified polycaprolactone (PCL) electrospun nanofiber (NF) mats. The as-prepared NF mats were fabricated by one-step electrospinning and it was exploited for three different purposes (i) reusable SERS substrate for quantitative analysis to trace organic pollutants, (ii) photocatalyst for degradation of organic pollutants and (iii) antibacterial agent for killing of bacteria. Three different nanofiber mats, PCL, PCL-TiO2, PCL/TiO2-Ag NFs. were fabricated and further investigated. The morphologies and structures of the as-prepared nanofiber mats were carried out using X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX) and fourier transform infrared spectroscopy (FT-IR) techniques. PCL/TiO2-Ag NFs served as a highly effective SERS platform with a detection limit of 10 nM for the detection of methylene blue dye (MB). A remarkable feature of the presented platform is the ability to reuse the PCL/TiO2-Ag NFs for SERS analysis of MB; availing from its capability for self-cleaning under UV light. By employing PCL/TiO2-Ag NFs nanocatalyst, complete photocatalytic degradation of the probe analytes MB and ibuprofen (Ibu) under UV irradiation was accomplished not more than 180 min. Moreover, PCL/TiO2-Ag NF mats showed a highly promising bactericidal feature against gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria, which immensely emerged due to the presence of Ag NPs. This new trending nanofiber is assumed to lead a bunch of changes in the field of photocatalytic, SERS and antibacterial studies.


Subject(s)
Nanofibers/chemistry , Polyesters/chemistry , Silver/chemistry , Titanium/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Environmental Pollutants/chemistry , Methylene Blue/chemistry , Nanofibers/toxicity , Photolysis , Spectrum Analysis, Raman/instrumentation
4.
Nanoscale ; 12(2): 895-903, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31833522

ABSTRACT

Applications that range from electronics to biotechnology will greatly benefit from low-cost, scalable and multiplex fabrication of spatially defined arrays of colloidal inorganic nanocrystals. In this work, we present a novel additive patterning approach based on the use of electrospun nanofibers (NFs) as inkpots for end-functional polymers. The localized grafting of end-functional polymers from spatially defined nanofibers results in covalently bound chemical patterns. The main factors that determine the width of the nanopatterns are the diameter of the NF and the extent of spreading during the thermal annealing process. Lowering the surface energy of the substrates via silanization and a proper choice of the grafting conditions enable the fabrication of nanoscale patterns over centimeter length scales. The fabricated patterns of end-grafted polymers serve as the templates for spatially defined assembly of colloidal metal and metal oxide nanocrystals of varying sizes (15 to 100 nm), shapes (spherical, cube, rod), and compositions (Au, Ag, Pt, TiO2), as well as semiconductor quantum dots, including the assembly of semiconductor nanoplatelets.

5.
J Colloid Interface Sci ; 532: 449-455, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30099308

ABSTRACT

Approaches are needed for the tailored assembly of plasmonic building blocks on the surface of substrates to synergistically enhance their properties. Here we demonstrate selective immobilization and assembly of gold nanorods (NRs) on substrates modified and patterned with end-grafted poly(ethylene glycol) (PEG) layers. The ligand exchange from the initial cetyltrimethylammonium bromide to sodium citrate was necessary for the immobilization of gold NRs onto PEG grafted substrates. Linear nanopatterns of PEG were fabricated using electrospun nanofibers as masks in oxygen plasma etching. The selective immobilization of citrate-stabilized gold NRs with a length of ∼50 nm and a width of 20 nm on the nanopatterned PEG layers led to linear and registered arrays of rods. The number of gold NRs per line depended on the width of the patterns and approached 1 when the width of the patterns was comparable to the length of the rods. The confinement of the binding regions led to a ∼3 fold increase in the number of gold NRs immobilized per unit area. The selective and dense immobilization of gold NRs on the nanoscale patterns of PEG resulted in spatially defined and strong surface-enhanced Raman scattering activity enabling detection of molecules at concentrations as low as 1 nM.

6.
Chemphyschem ; 18(15): 2114-2122, 2017 Aug 05.
Article in English | MEDLINE | ID: mdl-28557235

ABSTRACT

This work reports scalable, low-cost, and simple fabrication of plasmonic heterostructures consisting of gold nanoparticles (NPs) of different sizes to generate intense hot-pots over large areas to serve as substrates for molecular sensing in SERS applications. Our approach involves assembly of massively-available colloidal gold NPs on substrates functionalized with end-grafted poly(ethylene glycol) (PEG) brushes without need for any sophisticated tools and post-modification of the particles and substrates. From real-time monitoring of the adsorption process by using a quartz crystal microbalance, we identified that the cyclic deposition of citrate-stabilized gold NPs on PEG brushes is an effective approach to modulate the kinetics of particle adsorption and greatly improves the surface coverage leading to reduced inter-particle distances. Cyclic deposition of NPs differing in size leads to placement of the small particles in close proximity of the large ones, yielding hot-spots as a consequence of the unique type of interaction between PEG chains and gold NPs. Assembly of heterostructures (60 nm+40 nm and 60 nm+20 nm) at optimized conditions resulted in strong SERS effects with enhancement factors as high as ≈2.0×106 and enabled detection of rhodamine 6G molecules in concentrations as low as 1 nm. The cyclic deposition of NPs also results in increase of the water contact angle without need for any post-modification of the substrate, resulting in ≈30 fold increase in the Raman intensity of aqueous molecules. The insights gained on the adsorption of gold NPs together with the simplicity of the presented approach show great promise for surface assembly of colloidal NPs for a broad range of applications.

7.
ACS Macro Lett ; 6(6): 603-608, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-35650844

ABSTRACT

This paper presents electrospin nanolithography (ESPNL) for versatile and low-cost fabrication of nanoscale patterns of polymer brushes to serve as templates for assembly of metallic nanoparticles. Here electrospun nanofibers placed on top of a substrate grafted with polymer brushes serve as masks. The oxygen plasma etching of the substrate followed by removal of the fibers leads to linear patterns of polymer brushes. The line-widths as small as ∼50 nm can be achieved by precise tuning of the diameter of fibers, etching condition, and fiber-substrate interaction. Highly aligned and spatially defined patterns can be fabricated by operating in the near-field electrospinning regime. Patterns of polymer brushes with two different chemistries effectively directed the assembly of gold nanoparticles and silver nanocubes. Nanopatterned brushes imparted strong confinement effects on the assembly of plasmonic nanoparticles and resulted in strong localization of electromagnetic fields leading to intense signals in surface-enhanced Raman spectroscopy. The scalability and simplicity of ESPNL hold great promise in patterning of a broad range of polymer thin films for different applications.

8.
ACS Macro Lett ; 4(12): 1356-1361, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-35614782

ABSTRACT

We present a high-throughput and inexpensive fabrication approach that uses self-assembled block copolymer (BCP) films as templates to generate dense nanoscale chemical patterns of polymer brushes for the selective immobilization of Au nanoparticles (NPs). A cross-linked random copolymer mat that contains styrene and methyl methacrylate units serves both as a base layer for perpendicular assembly of nanoscale domains of poly(styrene-block-methyl methacrylate) (PS-b-PMMA) films and as a nonadsorbing background layer that surrounds the chemical patterns. The selective removal of the PMMA block and the underlying mat via oxygen plasma etching generates binding sites which are then functionalized with poly(2-vinylpyridine) (P2VP) brushes. Au NPs with a diameter of 13 nm selectively immobilize on the patterned P2VP brushes. An essential aspect in fabricating high quality chemical patterns is the superior behavior of methyl methacrylate containing cross-linked mats in retaining their chemistry during the grafting of P2VP brushes. The use of BCPs with different molecular weights and volume fractions allows for preparation of chemical patterns with different geometries, sizes, and pitches for generating arrays of single particles that hold great promise for applications that range from molecular sensing to optical devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...