Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(1): 925-933, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222564

ABSTRACT

In this contribution, we investigated the properties of magnetron-sputtered TiN thin films on sapphire and quartz substrates before and after 5 MeV electron irradiation with a fluence of 7 × 1013 e/cm2. Structural, morphological, optical, and electrical properties were analyzed to observe the impact of electron irradiation on the TiN thin films. The results showed improved electrical properties of the TiN thin films due to high-energy electron irradiation, resulting in increased specific conductivity compared to the as-deposited thin films on both sapphire and quartz substrates. The structural features of the TiN thin films on the sapphire substrate transformed from polycrystalline to amorphous, while the TiN thin films deposited on the quartz substrate remained unchanged. Chemical state analysis indicated changes in the metallic bonding between Ti and N in the deposited TiN on the sapphire substrate, while TiN deposited on the quartz substrate retained its Ti-N bonding. This study provides insights into the effects of electron irradiation on TiN thin films, emphasizing the importance of investigating radiation resistance for the reliable operation of optoelectronic devices and photovoltaic systems in extreme ionizing radiation environments.

2.
ACS Omega ; 7(51): 48467-48475, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36591155

ABSTRACT

In this work, a complex experimental study of the effect of electron and proton ionizing radiation on the properties of carbon nanowalls (CNWs) is carried out using various state-of-the-art materials characterization techniques. CNW layers on quartz substrates were exposed to 5 MeV electron and 1.8 MeV proton irradiation with accumulated fluences of 7 × 1013 e/cm2 and 1012 p/cm2, respectively. It is found that depending on the type of irradiation (electron or proton), the morphology and structural properties of CNWs change; in particular, the wall density decreases, and the sp2 hybridization component increases. The morphological and structural changes in turn lead to changes in the electronic, optical, and electrical characteristics of the material, in particular, change in the work function, improvement in optical transmission, an increase in the surface resistance, and a decrease in the specific conductivity of the CNW films. Lastly, this study highlights the potential of CNWs as nanostructured functional materials for novel high-performance radiation-resistant electronic and optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...