Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36501567

ABSTRACT

Electrodialysis with layer-by-layer coated membranes is a promising method for the separation of monovalent and polyvalent ions. Since the separation selectivity is significantly reduced in the presence of defects in the multilayer system, the stability of the modifiers becomes an important issue. This article reports the i-V curves of layer-by-layer coated membranes based on the heterogeneous MK-40 membrane before and after 50 h long electrodialysis of a solution containing sodium and calcium ions at an underlimiting current density, and the values of concentrations of cations in the desalination chamber during electrodialysis. It is shown that the transport of bivalent ions through the modified membranes is reduced throughout the electrodialysis by about 50%, but the operation results in decreased resistance of the membrane modified with polyethylenimine, which may suggest damage to the modifying layer. Even after electrodialysis, the modified membrane demonstrated experimental limiting current densities higher than that of the substrate, and in case of the membrane modified with polyallylamine, the limiting current density 10% higher than that of the substrate membrane.

2.
Membranes (Basel) ; 12(2)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35207067

ABSTRACT

The creation of monovalent selective ion exchange membranes benefits the desalination of surface waters by removing interfering monovalent ions while preserving polyvalent ionic nutrients. Studies of a promising method of layer-by-layer adsorption of polymers for the creation of monovalent selective coatings note a significant effect of the number of formed layers and of the nature of the external layer on the properties of the resulting membranes. This article reports the changes in properties of layer-by-layer coated heterogeneous membranes occurring at increasing numbers of layers that are attributed to the supposed intermixing of polymers between the layers, namely dependence of limiting current densities determined from i-V curve, enhanced electroconvection that was attributed to the appearing electrical heterogeneity of the surface, and the decreasing monovalent selectivity in electrodialysis of mixed NaCl + CaCl2 solution (from 1.33 to about 1) between the samples with five and six to eight layers of polymers.

3.
Membranes (Basel) ; 11(2)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672481

ABSTRACT

Ion exchange membranes covered with layers of polyelectrolytes of alternating charges are characterized by very high monovalent selectivity. This allows the use of such membranes for electrodialytic fractionation of multicomponent solutions. However, the very existence of the boundary at which differently charged layers come in contact can hinder a membrane's effectiveness by limiting its ion permeability, raising levels of H+ and OH- ions (thus shifting the pH) and increasing the electrical resistance of the membrane, which leads to increased energy consumption. To test how these properties would be changed, we created cheap layer-by-layer-modified membranes based on the heterogeneous MK-40 membrane, on which we adsorbed layers of polyallylamine and sulfonated polystyrene. We created samples with 3, 4, and 5 layers of polyelectrolytes and characterized them. We showed that the application of layers did not decrease the efficiency of the membrane, since the electrical resistance of the modified samples, which increased after application of the first oppositely charged layer, declined with the application of the following layers and became comparable to that of the substrate, while their limiting current density was higher and the shift of pH of treated solution was low in magnitude and comparable with that of the substrate membrane.

4.
Membranes (Basel) ; 10(2)2020 Jan 27.
Article in English | MEDLINE | ID: mdl-32012783

ABSTRACT

Coating of ion exchange membranes used in electrodialysis with layers of polyelectrolytes is a proven approach that allows for the increasing of the limiting current, the suppressing of sedimentation, the controlling of the intensity of generation of H+ and OH- ions, and also the improving of monovalent selectivity. However, in the case when two materials with the opposite sign of the charge of fixed groups come in contact, a bipolar boundary is created that can cause undesirable changes in the membrane properties. In this work, we used a MK-40 heterogeneous membrane on the surface of which a layer of polyethyleneimine was applied by adsorption from a solution as a model of heterogeneous membranes modified with oppositely charged polyelectrolyte. It was found that, on one hand, the properties of modified membrane were beneficial for electrodialysis, its limiting current did not decrease and the membrane even acquired a barrier to non-selective electrolyte transport. At the same time, the generation of H+ and OH- ions of low intensity arose, even in underlimiting current modes. It was also shown that despite the presence of a layer of polyethyleneimine, the surface charge of the modified membrane remained negative, which we associate with low protonation of polyethyleneimine at neutral pH.

SELECTION OF CITATIONS
SEARCH DETAIL
...