Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(13): 6909-6917, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38507256

ABSTRACT

Ligand exchange reaction (LER) between carbon nanoparticles and ferrocene (Cp2Fe) was conducted several times, but there was no convincing evidence of half-sandwich CpFe+ coordination to multiwalled carbon nanotubes (MWCNT). In this study, MWCNT is modified by LER with ferrocene using AlCl3/Al as a catalytic system. The modified MWCNT (Fc-MWCNT) are investigated for better understanding of the processes taking place on the surface of MWCNT using different spectroscopic and electrochemical methods. The formation of the Fe-C covalent bond between CpFe+ and MWCNT is confirmed by changes in the Raman spectrum of Fc-MWCNT compared to pristine MWCNT. The densest structure of Fc-MWCNT is investigated by transmission electronic microscopy. According to density-functional theory calculations of the model interaction between Fe and coronene, the Fe-C bond length is 2.1687-2.1855 Å. X-ray photoelectron spectroscopy also confirms the coordination of the Fe atom to MWCNT by analysis of oxidation states of Fe 2p and deconvolution of C 1s. Utilization of cyclic voltammetry corroborated MWCNT modification via LER. These data are important for both theoretical and practical applications due to increased interest in LER-modified compounds in different areas including thermoelectric devices, sensors, and its potential application in the field of molecular machine construction.

2.
Org Biomol Chem ; 20(22): 4559-4568, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35593098

ABSTRACT

Selective heterocyclization leading to 1,2,3,4-tetrahydrobenzo[h]quinazolines from ortho-ketimines of 1,8-bis(dimethylamino)naphthalene (DmanIms) under acid catalysis has been revealed. In contrast to the rather unreactive N,N-dimethylaniline ortho-ketimine, DmanIms readily undergo this transformation without an additional catalyst. This distinction in the reactivity underscores the importance of the second peri-NMe2 group in DmanIms, which facilitates a [1,5]-hydride shift and the subsequent cyclization. The cascade of peri-interactions emerging between 1-NMe2 and 8-NMe2 groups has been identified as a reason for the catalytic effect: (1) the hydrogen bond in the DmanIm dication constrains 1-NMe2 in the desired position providing proximity of reaction centers, (2) the repulsion of the lone pairs of 8-NMe2 group and unrelaxed 1-NMe2 group arising right after deprotonation process reduces the Gibbs free energy of activation (ΔG‡) for the straight hydride shift, and (3) the electrostatic interaction between 8-NMe2 and the charged NCH2+ group in the intermediate increases the ΔG‡ for the reverse hydride shift.

3.
Nanomaterials (Basel) ; 9(4)2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30987292

ABSTRACT

Aluminum-based metallic matrix composites reinforced by carbon nanofibers (CNFs) are important precursors for development of new light and ultralight materials with enhanced properties and high specific characteristics. In the present work, powder metallurgy technique was applied for production of composites based on reinforcement of aluminum matrices by CNFs of different concentrations (0~2.5 wt%). CNFs were produced by chemical vapor deposition (CVD) and mechanical activation. We determined that in situ synthesis of carbon nanostructures with subsequent mechanic activation provides satisfactory distribution of nanofibers and homogeneous composite microstructure. Introduction of 1 vol% of flux (0.25 NaCl + 0.25 KCl + 0.5 CaF2) during mechanic activation helps to reduce the strength of the contacts between the particles. Additionally, better reinforcement of alumina particles and strengthening the bond between CNFs and aluminum are observed due to alumina film removal. Introduction of pure aluminum into mechanically alloyed powder provides the possibility to control composite durability, plasticity and thermal conductivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...