Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Chromatogr A ; 1216(10): 1640-9, 2009 Mar 06.
Article in English | MEDLINE | ID: mdl-19081101

ABSTRACT

The solvation parameter model is used to characterize the separation properties of four open-tubular columns for gas chromatography at low and intermediate column temperatures covering the range 60-240 degrees C. Solute descriptors for compounds suitable for characterizing columns over the intermediate temperature range are optimized using an iterative procedure. These compounds, and those previously recommended for the lower temperature range, are used to provide system constant maps for Rxi-5Sil MS, Rxi-17, Rtx-TNT and Rtx-TNT2 columns suitable for merging with a system constants database with entries for more than 50 columns. The Rxi-5Sil MS column is shown to have separation properties similar to the silphenylene-dimethylsiloxane copolymer stationary phase (DB-5ms) but these two columns are not selectivity equivalent. The Rxi-17 column has similar separation properties to the Rxi-50 column but is not selectivity equivalent to it. Rxi-17 is a poly(dimethyldiphenylsiloxane) stationary phase containing 50% diphenylsiloxane monomer and Rxi-50 a poly(methylphenylsiloxane) stationary phase with the same nominal composition but a different monomer structure. The difference in monomer structure results in only small changes in selectivity, and for all but the most demanding separations, the columns are interchangeable. The application-specific column (energetic materials) Rtx-TNT is shown to be selectivity equivalent to columns coated with the poly(dimethyldiphenylsiloxane) stationary phases containing 5% diphenylsiloxane monomer. The Rtx-TNT2 column is selectivity equivalent to the proprietary Rtx-OPPesticides column. Rtx-OPPesticides is a low bleed stationary phase, possibly based on silarylene-siloxane chemistry, with a composition designed to mimic the separation properties of the poly(dimethylmethyltrifluoropropylsiloxane) stationary phases containing 35% methyltrifluoropropylsiloxane monomer. Selectivity equivalence of columns is determined by the statistical agreement in system constants at 20 degrees C intervals over the full temperature range from 60 to 240 degrees C, and by the construction of correlation plots for the retention factors of varied compounds for the same temperature intervals.


Subject(s)
Chromatography, Gas/methods , Models, Chemical , Solvents/chemistry , Algorithms , Linear Models , Sensitivity and Specificity , Siloxanes/chemistry , Temperature
2.
J Sep Sci ; 30(5): 740-5, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17461115

ABSTRACT

The solvation parameter model is used to characterize the separation properties of the polar stationary phases EC-Wax and PAG with a poly(ethylene oxide) backbone (substituted with propylene oxide in the case of PAG) and the cyanopropyl-substituted polysilphenylene-siloxane stationary phase BPX90 at five equally spaced temperatures between 60 and 140 degrees C. The separation characteristics of these stationary phases are compared to four PEG and two poly(cyanopropylsiloxane) stationary phases (HP-20M, HP-Innowax, SolGel-Wax, DB-WAXetr, HP-88, and SP-2340) characterized in the same way. The database of system constants for these polar stationary phases is used to provide insight into the separation mechanism for fatty acid methyl esters and to determine selectivity differences that can be expected for generically similar stationary phase types. The discussion is not structured to indicate which stationary phase should be used for a particular separation but to provide a general framework to demonstrate the relationship between the retention mechanism and stationary phase chemistry.


Subject(s)
Chromatography, Gas/methods , Esters/isolation & purification , Fatty Acids/isolation & purification , Alkylation , Esters/chemistry , Fatty Acids/chemistry , Methylation , Siloxanes/chemistry , Temperature
3.
J Chromatogr A ; 1134(1-2): 284-90, 2006 Nov 17.
Article in English | MEDLINE | ID: mdl-16996069

ABSTRACT

The solvation parameter model is used to characterize the separation characteristics of two application-specific open-tubular columns (Rtx-Volatiles and Rtx-VGC) and a general purpose column for the separation of volatile organic compounds (DB-WAXetr) at five equally spaced temperatures over the range 60-140 degrees C. System constant differences and retention factor correlation plots are then used to determine selectivity differences between the above columns and their closest neighbors in a large database of system constants and retention factors for forty-four open-tubular columns. The Rtx-Volatiles column is shown to have separation characteristics predicted for a poly(dimethyldiphenylsiloxane) stationary phase containing about 16% diphenylsiloxane monomer. The Rtx-VGC column has separation properties similar to the poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 14% cyanopropylphenylsiloxane monomer DB-1701 for non-polar and dipolar/polarizable compounds but significantly different characteristics for the separation of hydrogen-bond acids. For all practical purposes the DB-WAXetr column is shown to be selectivity equivalent to poly(ethylene glycol) columns prepared using different chemistries for bonding and immobilizing the stationary phase. Principal component analysis and cluster analysis are then used to classify the system constants for the above columns and a sub-database of eleven open-tubular columns (DB-1, HP-5, DB-VRX, Rtx-20, DB-35, Rtx-50, Rtx-65, DB-1301, DB-1701, DB-200, and DB-624) commonly used for the separation of volatile organic compounds. A rationale basis for column selection based on differences in intermolecular interactions is presented as an aid to method development for the separation of volatile organic compounds.


Subject(s)
Organic Chemicals/isolation & purification , Chromatography, Gas , Evaluation Studies as Topic , Polyethylene Glycols/chemistry , Siloxanes/chemistry , Volatilization
4.
J Chromatogr A ; 1128(1-2): 228-35, 2006 Sep 22.
Article in English | MEDLINE | ID: mdl-16837002

ABSTRACT

The solvation parameter model is used to characterize the retention properties of four application-specific open-tubular columns (Rtx-CLPesticides, Rtx-OPPesticides, Rtx-Dioxin and Rtx-Dioxin2) at five equally spaced temperatures over the range 60-140 degrees C. Cluster analysis is used to compare the system constants to a database of forty open-tubular columns characterized according to the same method. System constants differences and retention factor correlation plots are then used to determine selectivity differences between the application-specific columns and their nearest neighbors identified by cluster analysis. The Rtx-CLPesticides and Rtx-OPPesticides columns are shown to belong to the selectivity group containing poly(dimethylmethyltrifluoroprpylsiloxane) stationary phases with Rtx-OPPesticides having a similar selectivity to a poly(dimethylmethyltrifluoropropylsiloxane) stationary phase containing 20% methyltrifluoropropylsiloxane monomer (DB-200) and Rtx-CLPesticides separation properties for a stationary phase containing less than 20% methyltrifluoropropylsiloxane monomer. The Rtx-Dioxin and Rtx-Dioxin2 columns are located in the selectivity group dominated by the poly(dimethyldiphenylsiloxane) stationary phases containing less than 20% diphenylsiloxane monomer. The Rtx-Dioxin and Rtx-Dioxin2 columns are shown to be selectivity equivalent to a (5% phenyl) carborane-siloxane copolymer stationary phase (Stx-500) and a second generation silarylene-siloxane copolymer stationary phase containing dimethylsiloxane and diphenylsiloxane monomers (DB-XLB), respectively.


Subject(s)
Chromatography, Gas/instrumentation , Dioxins/isolation & purification , Pesticides/isolation & purification , Cluster Analysis , Polymers/chemistry , Siloxanes/chemistry
5.
J Chromatogr A ; 1115(1-2): 133-41, 2006 May 19.
Article in English | MEDLINE | ID: mdl-16564531

ABSTRACT

Plots of the retention factor against mobile phase composition were used to organize a varied group of solutes into three categories according to their retention mechanism on an octadecylsiloxane-bonded silica stationary phase HyPURITY C18 with methanol-water and acetonitrile-water mobile phase compositions containing 10-70% (v/v) organic solvent. The solutes in category 1 could be fit to a general retention model, Eq. (2), and exhibited normal retention behavior for the full composition range. The solutes in category 2 exhibited normal retention behavior at high organic solvent composition with a discontinuity at low organic solvent compositions. The solutes in category 3 exhibited a pronounced step or plateau in the middle region of the retention plots with a retention mechanism similar to category 1 solutes at mobile phase compositions after the discontinuity and a different retention mechanism before the discontinuity. Selecting solutes and appropriate composition ranges from the three categories where a single retention mechanism was operative allowed modeling of the experimental retention factors using the solvation parameter model. These models were then used to predict retention factors for solutes not included in the models. The overwhelming number of residual values [log k (experimental) - log k (model predicted)] were negative and could be explained by contributions from steric repulsion, defined as the inability of the solute to insert itself fully into the stationary phase because of its bulkiness (i.e., volume and/or shape). Steric repulsion is shown to strongly depend on the mobile phase composition and was more significant for mobile phases with a low volume fraction of organic solvent in general and for mobile phases containing methanol rather than acetonitrile. For mobile phases containing less than about 20 % (v/v) organic solvent the mobile phase was unable to completely wet the stationary phase resulting in a significant change in the phase ratio and for acetonitrile (but less so methanol) changes in the solvation environment indicated by a discontinuity in the system maps.


Subject(s)
Chromatography, Liquid/instrumentation , Silanes/chemistry , Siloxanes/chemistry , Acetonitriles/chemistry , Pharmaceutical Preparations/isolation & purification , Water/chemistry
6.
J Sep Sci ; 29(2): 211-7, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16524094

ABSTRACT

The solvation parameter model is used to characterize the retention properties of five open-tubular column stationary phases (ZB-5 ms, DB-5 ms, DB-XLB, DB-17 ms, and DB-35 ms) based on silarylene-siloxane copolymer chemistries at five equally spaced temperatures over the range 60-140 degrees C. System constant differences and regression models for varied compounds are used to establish the selectivity equivalence of the silarylene-siloxane copolymer stationary phases and to compare their separation characteristics with poly(dimethyldiphenylsiloxane) stationary phases containing a nominally similar concentration of phenyl groups. These studies demonstrate that ZB-5 ms and DB-5 ms are selectivity equivalent. DB-XLB is significantly more dipolar and polarizable than DB-5 ms. In general terms, the silarylenesiloxane copolymer stationary phases are slightly less cohesive and more dipolar and polarizable with similar hydrogen-bond basicity to the poly(dimethyldiphenylsiloxane) stationary phases they were designed to replace. None of the silarylenesiloxane copolymer or poly(dimethyldiphenylsiloxane) stationary phases are hydrogen-bond acidic. Selectivity differences between the two types of stationary phase are temperature dependent and tend to be smaller at higher temperatures within the temperature range studied. Consequently, selectivity differences cannot be globalized without reference to the temperature for the comparison.

7.
J Chromatogr A ; 1104(1-2): 299-312, 2006 Feb 03.
Article in English | MEDLINE | ID: mdl-16343516

ABSTRACT

An iteration procedure is used to calculate revised solute descriptors for 103 varied compounds suitable for characterizing the retention properties of stationary phases for gas chromatography using the solvation parameter model. The iteration procedure utilizes a database of retention factors obtained on up to 39 open-tubular columns and up to five temperatures in the range 60-140 degrees C for the 103 solutes. The average of the standard deviation [Sigma(logk(exp)-logk(calc))(2)/(n(c)-1)](0.5) where logk(exp) is the experimental retention factor, logk(calc) the model predicted retention factor, and n(c) the total number of retention factors) on all columns is 0.018 for the revised solute descriptors compared with 0.045 for the original values. When used to characterize the retention properties of six open-tubular columns selected to represent different selectivity groups the revised solute descriptors afford improved values for the multiple correlation coefficient and standard deviations of the system constants, and about a three-fold improvement in the standard error of the estimate compared with the original solute descriptors. The revised solute descriptors were used to model retention on the carborane-siloxane copolymer stationary phase Stx-500. This phase has low cohesion, is weakly electron lone pair repulsive, weakly dipolar/polarizable, and weakly hydrogen-bond basic. It has no hydrogen-bond acidity. Its separation properties are similar to those of the poly(diphenyldimethylsiloxane) stationary phases containing 5% diphenylsiloxane monomer, but it is not selectivity equivalent to these phases, being more dipolar/polarizable and a weaker hydrogen-bond base.


Subject(s)
Chromatography, Gas/instrumentation , Polymers/chemistry , Siloxanes/chemistry , Equipment Design
8.
J Chromatogr A ; 1081(2): 248-54, 2005 Jul 22.
Article in English | MEDLINE | ID: mdl-16038217

ABSTRACT

The solvation parameter model is used to characterize the retention properties of the bis(cyanopropylsiloxane)-co-methylsilarylene, HP-88, and poly(siloxane), Rtx-440, stationary phases over the temperature range 60-140 degrees C. HP-88 is among the most cohesive, dipolar/polarizable and hydrogen-bond basic of stationary phases for open-tubular column gas chromatography. It has no hydrogen-bond acidity or capacity for electron lone pair interactions. It exhibits similar selectivity to the poly(cyanopropylsiloxane) stationary phase SP-2340. Rtx-440 is a low-polarity, low-cohesion stationary phase with a moderate capacity for dipolar/polarizable and hydrogen-bond base interactions. It has no hydrogen-bond acidity and possesses weak electron lone pair interactions. It has unique selectivity when compared against a system constants database for 28 common stationary phase compositions. Cluster analysis indicated that the poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 6% cyanopropylphenylsiloxane monomer, DB-1301, the poly(dimethyldiphenylsiloxane) stationary phase containing 20% diphenylsiloxane monomer, Rtx-20, the poly(siloxane) stationary phase of unknown composition, DB-624, and DX-1 [a mixture of poly(dimethylsiloxane) and poly(ethylene glycol) 9:1] are the closest selectivity matches in the database. The selectivity of DB-1301 and Rtx-440 are very similar for solutes with weak hydrogen-bond acidity allowing one stationary phase to be substituted for the other with likely success. For strong hydrogen-bond acids, such as phenols, DB-1301 and Rtx-440 exhibit different selectivity.


Subject(s)
Chromatography, Gas/instrumentation , Siloxanes/chemistry , Hydrogen Bonding , Mathematics
9.
J Sep Sci ; 27(15-16): 1333-8, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15587283

ABSTRACT

The solvation parameter model is used to characterize the selectivity of DB-608 and DB-624 open-tubular columns at five equally spaced temperatures over the range 60 to 140 degrees C. The system constants for the DB-608 and DB-624 columns were used as selectivity parameters to search a database of open-tubular columns to identify columns with similar selectivity. The search was refined using the absolute deviation of the system constants and retention factor regression models for varied compounds. For method development it is shown that the selectivity of the poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 6% cyanopropylphenylsiloxane monomer (DB-1301) is equivalent to DB-624 and the poly(dimethyldiphenylsiloxane) stationary phases containing either 50 or 65% diphenylsiloxane monomer (Rtx-50 and Rtx-65) are suitable choices for DB-608.

10.
J Chromatogr A ; 1060(1-2): 177-85, 2004 Dec 10.
Article in English | MEDLINE | ID: mdl-15628160

ABSTRACT

Synergi Hydro-RP is a new type of polar-endcapped, octadecylsiloxane-bonded silica packing for reversed-phase liquid chromatography. Its retention properties as a function of solvent strength and temperature are evaluated from the change in retention factors over the composition range (0-70% v/v methanol) and temperature range (25-65 degrees C) using the solvation parameter model and response surface methodologies. The main factors that affect retention are solute size and hydrogen-bond basicity, with minor contributions from solute hydrogen-bond acidity, dipole-type and electron lone pair interactions. Within the easily accessible range for both temperature and solvent strength, the ability to change selectivity is much greater for solvent strength than temperature. Also, a significant portion of the effect of increasing temperature is to reduce retention without changing selectivity. Response surfaces for the system constants are smooth and non-linear, except for cavity formation and dispersion interactions (v system constant), which is linear. Modeling of the response surfaces suggests that solvent strength and temperature are not independent factors for the b, s and e system constants and for the model intercept (c term).


Subject(s)
Methanol/chemistry , Silanes/chemistry , Solvents/chemistry , Temperature , Water/chemistry , Hydrogen Bonding
11.
Analyst ; 127(12): 1608-13, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12537368

ABSTRACT

The solvation parameter model is used to determine the system constants for two sol-gel coated open-tubular columns at five equally spaced temperatures in the range 60-140 degrees C. Differences in the system constants as a function of temperature are used to determine the affect of sol-gel structure on the selectivity of SolGel-l and SolGel-Wax columns compared with conventionally coated and immobilized poly(dimethylsiloxane) and poly(ethylene glycol) stationary phases. The sol-gel columns should be suitable for similar separations to those presently performed on conventional immobilized liquid film columns of the same type but selectivity differences for polar compounds, which depend on temperature, should be anticipated.

SELECTION OF CITATIONS
SEARCH DETAIL
...