Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Vet Med Sci ; 86(3): 300-307, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38267037

ABSTRACT

We previously showed that the anti-Müllerian hormone (AMH), infiltrating from the testis to the mesonephros reaches the cranial and middle regions of the Müllerian duct (MD) and induces their regression using an organ culture in mice. However, it is difficult to maintain structural integrity, such as the length and diameter and normal direction of elongation of the caudal region of the MD, in conventional organ culture systems. Therefore, the pathway of AMH to the caudal MD region remains uncharted. In this study, we established an organ culture method that can maintain the morphology of the caudal region of the MD. The gonad-mesonephros complex, metanephros, and urinary bladder of mouse fetuses at 12.5 dpc attached to the body trunk were cultured on agarose gels for 72 hr. The cultured caudal region of the mesonephros was elongated along the body trunk, and the course of the mesonephros was maintained in many individuals. In males, mesenchymal cells aggregated around the MD after culture. Moreover, the male MD diameter was significantly smaller than the female. Based on these results, it was concluded that the development of the MD was maintained in the present organ culture system. Using this culture system, AMH infiltration to the caudal region of the MD can be examined without the influence of AMH in the blood. This culture system is useful for clarifying the regression mechanism of the caudal region of the MD.


Subject(s)
Anti-Mullerian Hormone , Embryonic Structures , Kidney/embryology , Mullerian Ducts , Mice , Male , Female , Animals , Organ Culture Techniques/veterinary , Anti-Mullerian Hormone/metabolism , Testis/metabolism
2.
Dev Dyn ; 253(3): 296-311, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37787412

ABSTRACT

BACKGROUND: The Müllerian duct (MD), the primordium of the female reproductive tract, is also formed in males during the early stage of development, then regresses due to the anti-Müllerian hormone (AMH) secreted from the testes. However, the detailed diffusion pathway of AMH remains unclear. We herein investigated the mechanism by which AMH reaches the middle region of the MD using an organ culture system. RESULTS: Injection of recombinant human AMH into the testis around the start of MD regression induced diffuse immunoreactivity in the mesonephros near the injection site. When the testis and mesonephros were cultured separately, the diameters of both cranial and middle MDs were significantly increased compared to the control. In the testis-mesonephros complex cultured by inhibiting the diffusion of AMH through the cranial region, the cranial MD diameter was significantly increased compared to the control, and there was no difference in middle MD diameter. CONCLUSIONS: These results indicate that AMH, which infiltrates from the testis through the cranial region at physiological concentrations, induces regression of the cranial MD at the start of MD regression. They also indicate that AMH infiltrating through the caudal regions induces regression of the middle MD.


Subject(s)
Anti-Mullerian Hormone , Testis , Humans , Male , Female , Animals , Mice , Gonads , Embryonic Development , Organ Culture Techniques , Transforming Growth Factor beta
3.
J Vet Med Sci ; 85(4): 507-514, 2023 Apr 22.
Article in English | MEDLINE | ID: mdl-36858585

ABSTRACT

The expression of sex determining region of the Y chromosome (Sry) in the fetal gonads is important for male development. In a mouse model of disorders of sex development (C57BL/6 (B6)-XYPOS), the gonadal phenotype and the timing of Sry expression differ due to differences among B6 substrains as the genetic background. Since differences in Sry expression among B6 substrains have been speculated, the present study examined Sry expression in B6J, B6JJmsSlc, and B6NCrl mice. These substrains differed in the number of Sry-expressing cells in the gonads of embryonic mice at each developmental stage, with B6NCrl having more than the other strains. The substrains differed also in the number of Sry-expressing cells between the left and right gonads, with B6J and B6NCrl, but not B6JJmsSlc, showing left gonad-dominant Sry expression. Substrain differences existed also in the distribution of Sry-expressing cells in the medial and lateral directions of gonads. In addition, in the left gonad-dominant Sry-expressing substrains B6J and B6NCrl, the medial and central regions of the left gonad had more Sry-expressing cells than those of the right gonad. Substrains of B6 mice have not always been considered in sex differentiation studies. In the present study, however, we observed substrain differences in the number of Sry-expressing cells, left-right distribution, and medial/lateral distribution during the early stages of gonadal development in B6 mice. Therefore, future studies on sex differentiation in B6 mice should consider substrain differences.


Subject(s)
Gonads , Y Chromosome , Mice , Male , Animals , Mice, Inbred C57BL , Sex-Determining Region Y Protein/genetics , Sex-Determining Region Y Protein/metabolism , Y Chromosome/genetics , Y Chromosome/metabolism , Sex Differentiation/genetics , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...