Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 11(7)2020 06 30.
Article in English | MEDLINE | ID: mdl-32630103

ABSTRACT

Wild potato species continue to be a rich source of genes for resistance to late blight in potato breeding. Whilst many dominant resistance genes from such sources have been characterised and used in breeding, quantitative resistance also offers potential for breeding when the loci underlying the resistance can be identified and tagged using molecular markers. In this study, F1 populations were created from crosses between blight susceptible parents and lines exhibiting strong partial resistance to late blight derived from the South American wild species Solanum microdontum and Solanum pampasense. Both populations exhibited continuous variation for resistance to late blight over multiple field-testing seasons. High density genetic maps were created using single nucleotide polymorphism (SNP) markers, enabling mapping of quantitative trait loci (QTLs) for late blight resistance that were consistently expressed over multiple years in both populations. In the population created with the S. microdontum source, QTLs for resistance consistently expressed over three years and explaining a large portion (21-47%) of the phenotypic variation were found on chromosomes 5 and 6, and a further resistance QTL on chromosome 10, apparently related to foliar development, was discovered in 2016 only. In the population created with the S. pampasense source, QTLs for resistance were found in over two years on chromosomes 11 and 12. For all loci detected consistently across years, the QTLs span known R gene clusters and so they likely represent novel late blight resistance genes. Simple genetic models following the effect of the presence or absence of SNPs associated with consistently effective loci in both populations demonstrated that marker assisted selection (MAS) strategies to introgress and pyramid these loci have potential in resistance breeding strategies.


Subject(s)
Disease Resistance , Quantitative Trait Loci , Solanum/genetics , Chromosomes, Plant/genetics , Phytophthora/pathogenicity , Plant Breeding/methods , Polymorphism, Single Nucleotide , Solanum/immunology , Solanum/microbiology
2.
Plant Biotechnol J ; 18(10): 2096-2108, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32096588

ABSTRACT

Solanum tuberosum potato lines with high amylose content were generated by crossing with the wild potato species Solanum sandemanii followed by repeated backcrossing to Solanum tuberosum lines. The trait, termed increased amylose (IAm), was recessive and present after three generations of backcrossing into S. tuberosum lines (6.25% S. sandemanii genes). The tubers of these lines were small, elongated and irregular with small and misshaped starch granules and high sugar content. Additional backcrossing resulted in less irregular tuber morphology, increased starch content (4.3%-9.5%) and increased amylose content (29%-37.9%) but indifferent sugar content. The amylose in the IAm starch granules was mainly located in peripheral spots, and large cavities were found in the granules. Starch pasting was suppressed, and the digestion-resistant starch (RS) content was increased. Comprehensive microarray polymer profiling (CoMPP) analysis revealed specific alterations of major pectic and glycoprotein cell wall components. This complex phenotype led us to search for candidate IAm genes exploiting its recessive trait. Hence, we sequenced genomic DNA of a pool of IAm lines, identified SNPs genome wide against the draft genome sequence of potato and searched for regions of decreased heterozygosity. Three regions, located on chromosomes 3, 7 and 10, respectively, displayed markedly less heterozygosity than average. The only credible starch metabolism-related gene found in these regions encoded the isoamylase-type debranching enzyme Stisa1. Decreased expression of mRNA (>500 fold) and reduced enzyme activity (virtually absent from IAm lines) supported Stisa1 as a candidate gene for IAm.

3.
Front Plant Sci ; 9: 1118, 2018.
Article in English | MEDLINE | ID: mdl-30131817

ABSTRACT

Genomic selection (GS) is becoming increasingly applicable to crops as the genotyping costs continue to decrease, which makes it an attractive alternative to traditional selective breeding based on observed phenotypes. With genome-wide molecular markers, selection based on predictions from genotypes can be made in the absence of direct phenotyping. The reliability of predictions depends strongly on the number of individuals used for training the predictive algorithms, particularly in a highly genetically diverse organism such as potatoes; however, the relationship between the individuals also has an enormous impact on prediction accuracy. Here we have studied genomic prediction in three different panels of potato cultivars, varying in size, design, and phenotypic profile. We have developed genomic prediction models for two important agronomic traits of potato, dry matter content and chipping quality. We used genotyping-by-sequencing to genotype 1,146 individuals and generated genomic prediction models from 167,637 markers to calculate genomic estimated breeding values with genomic best linear unbiased prediction. Cross-validated prediction correlations of 0.75-0.83 and 0.39-0.79 were obtained for dry matter content and chipping quality, respectively, when combining the three populations. These prediction accuracies were similar to those obtained when predicting performance within each panel. In contrast, but not unexpectedly, predictions across populations were generally lower, 0.37-0.71 and 0.28-0.48 for dry matter content and chipping quality, respectively. These predictions are not limited by the number of markers included, since similar prediction accuracies could be obtained when using merely 7,800 markers (<5%). Our results suggest that predictions across breeding populations in tetraploid potato are presently unreliable, but that individual prediction models within populations can be combined in an additive fashion to obtain high quality prediction models relevant for several breeding populations.

4.
Theor Appl Genet ; 130(10): 2091-2108, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28707250

ABSTRACT

KEY MESSAGE: Genomic prediction models for starch content and chipping quality show promising results, suggesting that genomic selection is a feasible breeding strategy in tetraploid potato. Genomic selection uses genome-wide molecular markers to predict performance of individuals and allows selections in the absence of direct phenotyping. It is regarded as a useful tool to accelerate genetic gain in breeding programs, and is becoming increasingly viable for crops as genotyping costs continue to fall. In this study, we have generated genomic prediction models for starch content and chipping quality in tetraploid potato to facilitate varietal development. Chipping quality was evaluated as the colour of a potato chip after frying following cold induced sweetening. We used genotyping-by-sequencing to genotype 762 offspring, derived from a population generated from biparental crosses of 18 tetraploid parents. Additionally, 74 breeding clones were genotyped, representing a test panel for model validation. We generated genomic prediction models from 171,859 single-nucleotide polymorphisms to calculate genomic estimated breeding values. Cross-validated prediction correlations of 0.56 and 0.73 were obtained within the training population for starch content and chipping quality, respectively, while correlations were lower when predicting performance in the test panel, at 0.30-0.31 and 0.42-0.43, respectively. Predictions in the test panel were slightly improved when including representatives from the test panel in the training population but worsened when preceded by marker selection. Our results suggest that genomic prediction is feasible, however, the extremely high allelic diversity of tetraploid potato necessitates large training populations to efficiently capture the genetic diversity of elite potato germplasm and enable accurate prediction across the entire spectrum of elite potatoes. Nonetheless, our results demonstrate that GS is a promising breeding strategy for tetraploid potato.


Subject(s)
Plant Tubers/chemistry , Solanum tuberosum/genetics , Starch/chemistry , Tetraploidy , Genotype , Linear Models , Models, Genetic , Plant Breeding , Plant Tubers/genetics , Polymorphism, Single Nucleotide
5.
Theor Appl Genet ; 128(11): 2143-53, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26163769

ABSTRACT

KEY MESSAGE: WUE phenotyping and subsequent QTL analysis revealed cytosolic GS genes importance for limiting N loss due to photorespiration under well-watered and well-fertilized conditions. Potato (Solanum tuberosum L.) closes its stomata at relatively low soil water deficits frequently encountered in normal field conditions resulting in unnecessary annual yield losses and extensive use of artificial irrigation. Therefore, unraveling the genetics underpinning variation in water use efficiency (WUE) of potato is important, but has been limited by technical difficulties in assessing the trait on individual plants and thus is poorly understood. In this study, a mapping population of potatoes has been robustly phenotyped, and considerable variation in WUE under well-watered conditions was observed. Two extreme WUE bulks of clones were identified and pools of genomic DNA from them as well as the parents were sequenced and mapped to reference potato genome. Following a novel data analysis approach, two highly resolved QTLs were found on chromosome 1 and 9. Interestingly, three genes encoding isoforms of cytosolic glutamine synthase were located in the QTL at chromosome 1 suggesting a major contribution of this enzyme to photosynthetic efficiency and thus WUE in potato. Indeed, Glutamine synthetase enzyme activity of leaf extracts was measured and found to be correlated with contrasting WUE phenotypes.


Subject(s)
Glutamate-Ammonia Ligase/physiology , Photosynthesis , Plant Proteins/physiology , Quantitative Trait Loci , Solanum tuberosum/genetics , Water/physiology , Chromosome Mapping , Cytosol/enzymology , DNA, Plant/genetics , Glutamate-Ammonia Ligase/genetics , High-Throughput Nucleotide Sequencing , Phenotype , Plant Leaves/enzymology , Plant Proteins/genetics , Sequence Analysis, DNA , Solanum tuberosum/enzymology , Solanum tuberosum/physiology
6.
J Exp Bot ; 63(13): 4765-79, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22844094

ABSTRACT

The defence responses of potato against Phytophthora infestans were studied using the highly resistant Sarpo Mira cultivar. The effects of plant integrity, meristems, and roots on the hypersensitive response (HR), plant resistance, and the regulation of PR genes were analysed. Sarpo Mira shoots and roots grafted with the susceptible Bintje cultivar as well as non-grafted different parts of Sarpo Mira plants were inoculated with P. infestans. The progress of the infection and the number of HR lesions were monitored, and the regulation of PR genes was compared in detached and attached leaves. Additionally, the antimicrobial activity of plant extracts was assessed. The presented data show that roots are needed to achieve full pathogen resistance, that the removal of meristems in detached leaves inhibits the formation of HR lesions, that PR genes are differentially regulated in detached leaves compared with leaves of whole plants, and that antimicrobial compounds accumulate in leaves and roots of Sarpo Mira plants challenged with P. infestans. While meristems are necessary for the formation of HR lesions, the roots of Sarpo Mira plants participate in the production of defence-associated compounds that increase systemic resistance. Based on the literature and on the presented results, a model is proposed for mechanisms involved in Sarpo Mira resistance that may apply to other resistant potato cultivars.


Subject(s)
Anti-Infective Agents/pharmacology , Gene Expression Regulation, Plant/genetics , Phytophthora infestans/pathogenicity , Plant Diseases/immunology , Plant Extracts/pharmacology , Solanum tuberosum/immunology , Anti-Infective Agents/chemistry , Disease Resistance , Meristem/chemistry , Meristem/genetics , Meristem/immunology , Meristem/parasitology , Models, Biological , Plant Diseases/parasitology , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/parasitology , Plant Proteins/genetics , Plant Roots/chemistry , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/parasitology , Plant Shoots/chemistry , Plant Shoots/genetics , Plant Shoots/immunology , Plant Shoots/parasitology , Signal Transduction , Solanum tuberosum/chemistry , Solanum tuberosum/genetics , Solanum tuberosum/parasitology
7.
Plant Cell Rep ; 31(1): 187-203, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21965005

ABSTRACT

Sarpo Mira, a potato variety with high resistance against the late blight pathogen Phytophthora infestans, is being used in breeding programs to increase late blight resistance in commercial varieties. Discovering genes that are important for P. infestans resistance will assist in the development of molecular markers for the selection of new resistant cultivars and the use of resistant varieties will reduce the environmental, health and financial costs associated with the use of pesticides. Using complementary DNA amplified fragment length polymorphism analyses, differentially expressed genes involved in the potato-P. infestans interaction were identified in the susceptible Bintje and in the resistant Sarpo Mira potato cultivars. Forty-eight differentially expressed transcript derived fragments (TDFs) were cloned and sequenced. The expression profiles of some of these genes were analyzed in detail using quantitative RT-PCR at seven time points: 1, 4, 17, 24, 30, 41 and 65 hours after inoculation (hai). We found that five transcripts with homologies to pathogenesis/defense-related genes and two TDFs with homology to transcription factors were significantly induced to higher levels in the resistant cultivar at very early stages of the infection (1 hai). Interestingly, most of these genes showed different expression profiles throughout the whole infection process between both cultivars. Particularly during its biotrophic growth phase, P. infestans triggered the down-regulation of infection responsive genes in the susceptible but not in the resistance cultivar. Our results suggest that these newly identified early-induced transcripts may be good candidates for conferring Sarpo Mira's resistance to late blight and they could be useful molecular markers for the selection of new resistant cultivars.


Subject(s)
Gene Expression Regulation, Plant , Phytophthora infestans/pathogenicity , Plant Diseases/microbiology , Solanum tuberosum/genetics , Solanum tuberosum/microbiology , Amplified Fragment Length Polymorphism Analysis , Disease Resistance/genetics , Host-Pathogen Interactions , Plant Diseases/genetics , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity
8.
Theor Appl Genet ; 117(1): 1-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18373078

ABSTRACT

New potato (Solanum tuberosum) varieties are required to contain low levels of the toxic glycoalkaloids and a potential approach to obtain this is through marker-assisted selection (MAS). Before applying MAS it is necessary to map quantitative trait loci (QTLs) for glycoalkaloid content in potato tubers and identify markers that link tightly to this trait. In this study, tubers of a dihaploid BC(1) population, originating from a cross between 90-HAF-01 (S. tuberosum(1)) and 90-HAG-15 (S. tuberosum(2) x S. sparsipilum), were evaluated for content of alpha-solanine and alpha-chaconine (total glycoalkaloid, TGA) after field trials. In addition, tubers were assayed for TGA content after exposure to light. A detailed analysis of segregation patterns indicated that a major QTL is responsible for the TGA content in tubers of this potato population. One highly significant QTL was mapped to chromosome I of the HAG and the HAF parent. Quantitative trait loci for glycoalkaloid production in foliage of different Solanum species have previously been mapped to this chromosome. In the present research, QTLs for alpha-solanine and alpha-chaconine content were mapped to the same location as for TGA content. Similar results were observed for tubers exposed to light. The simple sequence repeat marker STM5136 was closely linked to the identified QTL.


Subject(s)
DNA, Plant/genetics , Plant Tubers/chemistry , Quantitative Trait Loci , Solanine/analogs & derivatives , Solanum tuberosum/genetics , Amplified Fragment Length Polymorphism Analysis , Breeding , Chromatography, High Pressure Liquid , Chromosome Mapping , Chromosomes, Plant/genetics , Diploidy , Genetic Linkage , Genetic Markers , Light , Phenotype , Polymerase Chain Reaction , Principal Component Analysis , Repetitive Sequences, Nucleic Acid , Solanine/analysis , Solanum tuberosum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...