Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Clin Med ; 13(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38592057

ABSTRACT

(1) Background: SeptiCyte RAPID is a molecular test for discriminating sepsis from non-infectious systemic inflammation, and for estimating sepsis probabilities. The objective of this study was the clinical validation of SeptiCyte RAPID, based on testing retrospectively banked and prospectively collected patient samples. (2) Methods: The cartridge-based SeptiCyte RAPID test accepts a PAXgene blood RNA sample and provides sample-to-answer processing in ~1 h. The test output (SeptiScore, range 0-15) falls into four interpretation bands, with higher scores indicating higher probabilities of sepsis. Retrospective (N = 356) and prospective (N = 63) samples were tested from adult patients in ICU who either had the systemic inflammatory response syndrome (SIRS), or were suspected of having/diagnosed with sepsis. Patients were clinically evaluated by a panel of three expert physicians blinded to the SeptiCyte test results. Results were interpreted under either the Sepsis-2 or Sepsis-3 framework. (3) Results: Under the Sepsis-2 framework, SeptiCyte RAPID performance for the combined retrospective and prospective cohorts had Areas Under the ROC Curve (AUCs) ranging from 0.82 to 0.85, a negative predictive value of 0.91 (sensitivity 0.94) for SeptiScore Band 1 (score range 0.1-5.0; lowest risk of sepsis), and a positive predictive value of 0.81 (specificity 0.90) for SeptiScore Band 4 (score range 7.4-15; highest risk of sepsis). Performance estimates for the prospective cohort ranged from AUC 0.86-0.95. For physician-adjudicated sepsis cases that were blood culture (+) or blood, urine culture (+)(+), 43/48 (90%) of SeptiCyte scores fell in Bands 3 or 4. In multivariable analysis with up to 14 additional clinical variables, SeptiScore was the most important variable for sepsis diagnosis. A comparable performance was obtained for the majority of patients reanalyzed under the Sepsis-3 definition, although a subgroup of 16 patients was identified that was called septic under Sepsis-2 but not under Sepsis-3. (4) Conclusions: This study validates SeptiCyte RAPID for estimating sepsis probability, under both the Sepsis-2 and Sepsis-3 frameworks, for hospitalized patients on their first day of ICU admission.

3.
Nature ; 626(8001): 979-983, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38232945

ABSTRACT

The recent inference of sulfur dioxide (SO2) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations1-3 suggests that photochemistry is a key process in high-temperature exoplanet atmospheres4. This is because of the low (<1 ppb) abundance of SO2 under thermochemical equilibrium compared with that produced from the photochemistry of H2O and H2S (1-10 ppm)4-9. However, the SO2 inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.05 µm and, therefore, the detection of other SO2 absorption bands at different wavelengths is needed to better constrain the SO2 abundance. Here we report the detection of SO2 spectral features at 7.7 and 8.5 µm in the 5-12-µm transmission spectrum of WASP-39b measured by the JWST Mid-Infrared Instrument (MIRI) Low Resolution Spectrometer (LRS)10. Our observations suggest an abundance of SO2 of 0.5-25 ppm (1σ range), consistent with previous findings4. As well as SO2, we find broad water-vapour absorption features, as well as an unexplained decrease in the transit depth at wavelengths longer than 10 µm. Fitting the spectrum with a grid of atmospheric forward models, we derive an atmospheric heavy-element content (metallicity) for WASP-39b of approximately 7.1-8.0 times solar and demonstrate that photochemistry shapes the spectra of WASP-39b across a broad wavelength range.

4.
PLoS One ; 19(1): e0297516, 2024.
Article in English | MEDLINE | ID: mdl-38265985

ABSTRACT

The avian Gammacoronavirus infectious bronchitis virus (IBV) causes major economic losses in the poultry industry as the aetiological agent of infectious bronchitis, a highly contagious respiratory disease in chickens. IBV causes major economic losses to poultry industries across the globe and is a concern for global food security. IBV vaccines are currently produced by serial passage, typically 80 to 100 times in chicken embryonated eggs (CEE) to achieve attenuation by unknown molecular mechanisms. Vaccines produced in this manner present a risk of reversion as often few consensus level changes are acquired. The process of serial passage is cumbersome, time consuming, solely dependent on the supply of CEE and does not allow for rapid vaccine development in response to newly emerging IBV strains. Both alternative rational attenuation and cell culture-based propagation methods would therefore be highly beneficial. The majority of IBV strains are however unable to be propagated in cell culture proving a significant barrier to the development of cell-based vaccines. In this study we demonstrate the incorporation of a heterologous Spike (S) gene derived from the apathogenic Beaudette strain of IBV into a pathogenic M41 genomic backbone generated a recombinant IBV denoted M41K-Beau(S) that exhibits Beaudette's unique ability to replicate in Vero cells, a cell line licenced for vaccine production. The rIBV M41K-Beau(S) additionally exhibited an attenuated in vivo phenotype which was not the consequence of the presence of a large heterologous gene demonstrating that the Beaudette S not only offers a method for virus propagation in cell culture but also a mechanism for rational attenuation. Although historical research suggested that Beaudette, and by extension the Beaudette S protein was poorly immunogenic, vaccination of chickens with M41K-Beau(S) induced a complete cross protective immune response in terms of clinical disease and tracheal ciliary activity against challenge with a virulent IBV, M41-CK, belonging to the same serogroup as Beaudette. This implies that the amino acid sequence differences between the Beaudette and M41 S proteins have not distorted important protective epitopes. The Beaudette S protein therefore offers a significant avenue for vaccine development, with the advantage of a propagation platform less reliant on CEE.


Subject(s)
Gammacoronavirus , Infectious bronchitis virus , Vaccines , Animals , Chlorocebus aethiops , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Chickens , Infectious bronchitis virus/genetics
5.
Nature ; 617(7961): 483-487, 2023 May.
Article in English | MEDLINE | ID: mdl-37100917

ABSTRACT

Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 µm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-µm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.

6.
Viruses ; 15(2)2023 02 02.
Article in English | MEDLINE | ID: mdl-36851633

ABSTRACT

SeptiCyte® RAPID is a gene expression assay measuring the relative expression levels of host response genes PLA2G7 and PLAC8, indicative of a dysregulated immune response during sepsis. As severe forms of COVID-19 may be considered viral sepsis, we evaluated SeptiCyte RAPID in a series of 94 patients admitted to Foch Hospital (Suresnes, France) with proven SARS-CoV-2 infection. EDTA blood was collected in the emergency department (ED) in 67 cases, in the intensive care unit (ICU) in 23 cases and in conventional units in 4 cases. SeptiScore (0-15 scale) increased with COVID-19 severity. Patients in ICU had the highest SeptiScores, producing values comparable to 8 patients with culture-confirmed bacterial sepsis. Receiver operating characteristic (ROC) curve analysis had an area under the curve (AUC) of 0.81 for discriminating patients requiring ICU admission from patients who were immediately discharged or from patients requiring hospitalization in conventional units. SeptiScores increased with the extent of the lung injury. For 68 patients, a chest computed tomography (CT) scan was performed within 24 h of COVID-19 diagnosis. SeptiScore >7 suggested lung injury ≥50% (AUC = 0.86). SeptiCyte RAPID was compared to other biomarkers for discriminating Critical + Severe COVID-19 in ICU, versus Moderate + Mild COVID-19 not in ICU. The mean AUC for SeptiCyte RAPID was superior to that of any individual biomarker or combination thereof. In contrast to C-reactive protein (CRP), correlation of SeptiScore with lung injury was not impacted by treatment with anti-inflammatory agents. SeptiCyte RAPID can be a useful tool to identify patients with severe forms of COVID-19 in ED, as well as during follow-up.


Subject(s)
COVID-19 , Lung Injury , Sepsis , Humans , COVID-19 Testing , COVID-19/diagnosis , SARS-CoV-2/genetics , Sepsis/diagnosis , Area Under Curve , Proteins
7.
Sci Rep ; 13(1): 944, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36653401

ABSTRACT

Tools for the evaluation of COVID-19 severity would help clinicians with triage decisions, especially the decision whether to admit to ICU. The aim of this study was to evaluate SeptiCyte RAPID, a host immune response assay (Immunexpress, Seattle USA) as a triaging tool for COVID-19 patients requiring hospitalization and potentially ICU care. SeptiCyte RAPID employs a host gene expression signature consisting of the ratio of expression levels of two immune related mRNAs, PLA2G7 and PLAC8, measured from whole blood samples. Blood samples from 146 adult SARS-CoV-2 (+) patients were collected within 48 h of hospital admission in PAXgene blood RNA tubes at Hospital del Mar, Barcelona, Spain, between July 28th and December 1st, 2020. Data on demographics, vital signs, clinical chemistry parameters, radiology, interventions, and SeptiCyte RAPID were collected and analyzed with bioinformatics methods. The performance of SeptiCyte RAPID for COVID-19 severity assessment and ICU admission was evaluated, relative to the comparator of retrospective clinical assessment by the Hospital del Mar clinical care team. In conclusion, SeptiCyte RAPID was able to stratify COVID-19 cases according to clinical severity: critical vs. mild (AUC = 0.93, p < 0.0001), critical vs. moderate (AUC = 0.77, p = 0.002), severe vs. mild (AUC = 0.85, p = 0.0003), severe vs. moderate (AUC = 0.63, p = 0.05). This discrimination was significantly better (by AUC or p-value) than could be achieved by CRP, lactate, creatine, IL-6, or D-dimer. Some of the critical or severe cases had "early" blood draws (before ICU admission; n = 33). For these cases, when compared to moderate and mild cases not in ICU (n = 37), SeptiCyte RAPID had AUC = 0.78 (p = 0.00012). In conclusion, SeptiCyte RAPID was able to stratify COVID-19 cases according to clinical severity as defined by the WHO COVID-19 Clinical Management Living Guidance of January 25th, 2021. Measurements taken early (before a patient is considered for ICU admission) suggest that high SeptiScores could aid in predicting the need for later ICU admission.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Retrospective Studies , Triage , Spain , Intensive Care Units , Proteins
8.
EJVES Vasc Forum ; 56: 1-5, 2022.
Article in English | MEDLINE | ID: mdl-35498507

ABSTRACT

Objectives: Intraluminal prosthetic graft thrombus (IPT) following Endovascular Aneurysm Repair (EVAR) can have serious consequences. The aim of this study was to assess the prevalence of IPT and to identify the risk factors for its formation and progression. Methods: This was a retrospective study of 258 patients who had EVAR between 2015 and 2018. Demographic data, comorbidities, operative data, antithrombotic therapy, CT anatomical data, IPT characteristics (site, regression, and progression), and re-interventions were collected. Univariable analysis followed by multivariable logistic regression and Cox regression were used for data analysis. Results: The mean age of patients was 76 years (range 55-95) and 27 (10.5 %) were females. IPT was present in 26 patients (10.1%) with a median time to occurrence of six (range 1- - 24) months. Of the group that developed IPT, six (23.1 %) developed symptoms and two (7.7%) had re-interventions. Multivariable logistic regression analysis revealed peripheral arterial disease to be associated with the formation of IPT (OR 7.4, 95% CI 1.6-35.3, p = 0.02) and escalation of antithrombotic therapy was associated with regression or prevention of progression of IPT (OR 0.1, 95% CI 0.0-0.6, p = 0.01). Conclusion: PAD is associated with the formation of IPT after EVAR and warrants consideration of escalation of antithrombotic therapy to prevent further progression and complications.

9.
Br J Cancer ; 124(10): 1699-1710, 2021 05.
Article in English | MEDLINE | ID: mdl-33731859

ABSTRACT

BACKGROUND: High-grade serous ovarian cancer (HGSOC) is the most common and lethal ovarian cancer histotype. Chromosome instability (CIN, an increased rate of chromosome gains and losses) is believed to play a fundamental role in the development and evolution of HGSOC. Importantly, overexpression of Cyclin E1 protein induces CIN, and genomic amplification of CCNE1 contributes to HGSOC pathogenesis in ~20% of patients. Cyclin E1 levels are normally regulated in a cell cycle-dependent manner by the SCF (SKP1-CUL1-FBOX) complex, an E3 ubiquitin ligase that includes the proteins SKP1 and CUL1. Conceptually, diminished SKP1 or CUL1 expression is predicted to underlie increases in Cyclin E1 levels and induce CIN. METHODS: This study employs fallopian tube secretory epithelial cell models to evaluate the impact diminished SKP1 or CUL1 expression has on Cyclin E1 and CIN in both short-term (siRNA) and long-term (CRISPR/Cas9) studies. RESULTS: Single-cell quantitative imaging microscopy approaches revealed changes in CIN-associated phenotypes and chromosome numbers and increased Cyclin E1 in response to diminished SKP1 or CUL1 expression. CONCLUSIONS: These data identify SKP1 and CUL1 as novel CIN genes in HGSOC precursor cells that may drive early aetiological events contributing to HGSOC development.


Subject(s)
Chromosomal Instability/genetics , Cystadenocarcinoma, Serous , Neoplastic Stem Cells/metabolism , Ovarian Neoplasms , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cullin Proteins/genetics , Cullin Proteins/metabolism , Cyclin E/genetics , Cyclin E/metabolism , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , Female , Gene Expression Regulation, Neoplastic/physiology , Humans , Neoplasm Grading , Neoplastic Stem Cells/pathology , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Tumor Cells, Cultured
10.
Parkinsonism Relat Disord ; 70: 96-102, 2020 01.
Article in English | MEDLINE | ID: mdl-31866156

ABSTRACT

INTRODUCTION: Deep brain stimulation (DBS) surgery is an efficacious, underutilized treatment for Parkinson's disease (PD). Studies of DBS post-operative outcomes are often restricted to data from a single center and consider DBS in isolation. National estimates of DBS readmission and post-operative outcomes are needed, as are comparisons to commonly performed surgeries. METHODS: This study used datasets from the 2013 and 2014 Nationwide Readmissions Database (NRD). Our sample was restricted to PD patients discharged alive after hospitalization for DBS surgery. Descriptive analyses examined patient, clinical, hospital and index hospitalization characteristics. The all-cause, non-elective 30-day readmission rate after DBS was calculated, and logistic regression models were built to examine factors associated with readmission. Readmission rates for the most common surgical procedures were calculated and compared to DBS. RESULTS: There were 6058 DBS surgeries for PD in our sample, most often involving a male aged 65 and older, who lived in a high socioeconomic status zip code. DBS patients had an average of four comorbidities. With respect to outcomes, the majority of patients were discharged home (95.3%). Non-elective readmission was rare (4.9%), and was associated with socioeconomic status, comorbidity burden, and teaching hospital status. Much higher acute, non-elective readmission rates were observed for common procedures such as upper gastrointestinal endoscopy (16.2%), colonoscopy (14.0%), and cardiac defibrillator and pacemaker procedures (11.1%). CONCLUSION: Short-term hospitalization outcomes after DBS are generally favorable. Socioeconomic disparities in DBS use persist. Additional efforts may be needed to improve provider referrals for and patient access to DBS.


Subject(s)
Deep Brain Stimulation/statistics & numerical data , Outcome Assessment, Health Care/statistics & numerical data , Parkinson Disease/epidemiology , Parkinson Disease/therapy , Patient Readmission/statistics & numerical data , Acute Disease , Adult , Aged , Aged, 80 and over , Comorbidity , Databases, Factual , Deep Brain Stimulation/adverse effects , Female , Healthcare Disparities , Humans , Male , Middle Aged , Risk Factors , Social Class , United States/epidemiology
11.
J Clin Invest ; 129(3): 1314-1328, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30776026

ABSTRACT

It is widely believed that protection against acquisition of HIV or SIV infection requires anti-envelope (anti-Env) antibodies, and that cellular immunity may affect viral loads but not acquisition, except in special cases. Here we provide evidence to the contrary. Mucosal immunization may enhance HIV vaccine efficacy by eliciting protective responses at portals of exposure. Accordingly, we vaccinated macaques mucosally with HIV/SIV peptides, modified vaccinia Ankara-SIV (MVA-SIV), and HIV-gp120-CD4 fusion protein plus adjuvants, which consistently reduced infection risk against heterologous intrarectal SHIVSF162P4 challenge, both high dose and repeated low dose. Surprisingly, vaccinated animals exhibited no anti-gp120 humoral responses above background and Gag- and Env-specific T cells were induced but failed to correlate with viral acquisition. Instead, vaccine-induced gut microbiome alteration and myeloid cell accumulation in colorectal mucosa correlated with protection. Ex vivo stimulation of the myeloid cell-enriched population with SHIV led to enhanced production of trained immunity markers TNF-α and IL-6, as well as viral coreceptor agonist MIP1α, which correlated with reduced viral Gag expression and in vivo viral acquisition. Overall, our results suggest mechanisms involving trained innate mucosal immunity together with antigen-specific T cells, and also indicate that vaccines can have critical effects on the gut microbiome, which in turn can affect resistance to infection. Strategies to elicit similar responses may be considered for vaccine designs to achieve optimal protective efficacy.


Subject(s)
AIDS Vaccines/immunology , Acquired Immunodeficiency Syndrome/immunology , HIV-1/immunology , Immunity, Mucosal , Intestinal Mucosa/immunology , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Acquired Immunodeficiency Syndrome/pathology , Acquired Immunodeficiency Syndrome/prevention & control , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Colon/immunology , Colon/pathology , Immunity, Cellular , Intestinal Mucosa/pathology , Macaca mulatta , Rectum/immunology , Rectum/pathology , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Acquired Immunodeficiency Syndrome/prevention & control
12.
Am J Respir Crit Care Med ; 198(7): 903-913, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29624409

ABSTRACT

RATIONALE: A molecular test to distinguish between sepsis and systemic inflammation of noninfectious etiology could potentially have clinical utility. OBJECTIVES: This study evaluated the diagnostic performance of a molecular host response assay (SeptiCyte LAB) designed to distinguish between sepsis and noninfectious systemic inflammation in critically ill adults. METHODS: The study employed a prospective, observational, noninterventional design and recruited a heterogeneous cohort of adult critical care patients from seven sites in the United States (n = 249). An additional group of 198 patients, recruited in the large MARS (Molecular Diagnosis and Risk Stratification of Sepsis) consortium trial in the Netherlands ( www.clinicaltrials.gov identifier NCT01905033), was also tested and analyzed, making a grand total of 447 patients in our study. The performance of SeptiCyte LAB was compared with retrospective physician diagnosis by a panel of three experts. MEASUREMENTS AND MAIN RESULTS: In receiver operating characteristic curve analysis, SeptiCyte LAB had an estimated area under the curve of 0.82-0.89 for discriminating sepsis from noninfectious systemic inflammation. The relative likelihood of sepsis versus noninfectious systemic inflammation was found to increase with increasing test score (range, 0-10). In a forward logistic regression analysis, the diagnostic performance of the assay was improved only marginally when used in combination with other clinical and laboratory variables, including procalcitonin. The performance of the assay was not significantly affected by demographic variables, including age, sex, or race/ethnicity. CONCLUSIONS: SeptiCyte LAB appears to be a promising diagnostic tool to complement physician assessment of infection likelihood in critically ill adult patients with systemic inflammation. Clinical trial registered with www.clinicaltrials.gov (NCT01905033 and NCT02127502).


Subject(s)
Critical Care/methods , Intensive Care Units , Sepsis/diagnosis , Serum Bactericidal Test/methods , Systemic Inflammatory Response Syndrome/diagnosis , Adult , Aged , Cohort Studies , Critical Illness , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Netherlands , Prospective Studies , ROC Curve , Retrospective Studies , Sensitivity and Specificity , Sepsis/blood , Systemic Inflammatory Response Syndrome/blood , United States
13.
Biomaterials ; 98: 41-52, 2016 08.
Article in English | MEDLINE | ID: mdl-27179432

ABSTRACT

The one-step synthesis of a polyester family containing dihydroxyacetone is described along with a quantitative analysis of in vitro/in vivo degradation kinetics and initial biocompatibility. Polyesters were synthesized by combining dihydroxyacetone, which is a diol found in the eukaryotic glucose metabolic pathway, with even-carbon aliphatic diacids (adipic, suberic, sebacic) represented in the long-chain alpha carboxylic acid metabolic pathway, by SchÓ§tten-Baumann acylation. We show that by using a crystalline monomeric form of dihydroxyacetone, well-defined polyesters can be formed in one step without protection and deprotection strategies. Both diacid length and polyester molecular weight were varied to influence polymer physical and thermal properties. Polyesters were generated with number-averaged (Mn) molecular weights ranging from 2200-11,500. Polydispersities were consistent with step-growth polymerization and ranged from 2 to 2.6. The melting (Tm) and recrystallization (Tc) temperatures were impacted in an unpredictable manner. Thermal transitions for the polyesters were highest for the adipic acid followed by suberic acid and sebacic acid, respectively. It was shown that the thermal response of the DHA-based polyesters was influenced by both the diacid length and molecular weight. In vitro degradation studies revealed first-order weight loss kinetics, the molecular weight loss followed first order kinetics with 25%-40% of the original mass remaining after 8 weeks. In vivo testing over 16 weeks highlighted that mass loss ranged from ∼70% to ∼6% depending upon initial molecular weight and diacid length. Histological analysis revealed rapid resolution of both acute and chronic inflammatory responses, normal foreign body responses were observed and no inflammation was present after week 4. This one-step synthesis proved robust with unique copolymers warranting further study as potential biomaterials.


Subject(s)
Biocompatible Materials/chemical synthesis , Dihydroxyacetone/chemistry , Materials Testing/methods , Polyesters/chemical synthesis , Animals , Biocompatible Materials/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Carboxylic Acids/chemistry , Female , Half-Life , Kinetics , Polyesters/chemistry , Polymerization , Proton Magnetic Resonance Spectroscopy , Rats, Sprague-Dawley , Spectroscopy, Fourier Transform Infrared , Temperature
14.
PLoS Med ; 12(12): e1001916, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26645559

ABSTRACT

BACKGROUND: Systemic inflammation is a whole body reaction having an infection-positive (i.e., sepsis) or infection-negative origin. It is important to distinguish between these two etiologies early and accurately because this has significant therapeutic implications for critically ill patients. We hypothesized that a molecular classifier based on peripheral blood RNAs could be discovered that would (1) determine which patients with systemic inflammation had sepsis, (2) be robust across independent patient cohorts, (3) be insensitive to disease severity, and (4) provide diagnostic utility. The goal of this study was to identify and validate such a molecular classifier. METHODS AND FINDINGS: We conducted an observational, non-interventional study of adult patients recruited from tertiary intensive care units (ICUs). Biomarker discovery utilized an Australian cohort (n = 105) consisting of 74 cases (sepsis patients) and 31 controls (post-surgical patients with infection-negative systemic inflammation) recruited at five tertiary care settings in Brisbane, Australia, from June 3, 2008, to December 22, 2011. A four-gene classifier combining CEACAM4, LAMP1, PLA2G7, and PLAC8 RNA biomarkers was identified. This classifier, designated SeptiCyte Lab, was validated using reverse transcription quantitative PCR and receiver operating characteristic (ROC) curve analysis in five cohorts (n = 345) from the Netherlands. Patients for validation were selected from the Molecular Diagnosis and Risk Stratification of Sepsis study (ClinicalTrials.gov, NCT01905033), which recruited ICU patients from the Academic Medical Center in Amsterdam and the University Medical Center Utrecht. Patients recruited from November 30, 2012, to August 5, 2013, were eligible for inclusion in the present study. Validation cohort 1 (n = 59) consisted entirely of unambiguous cases and controls; SeptiCyte Lab gave an area under curve (AUC) of 0.95 (95% CI 0.91-1.00) in this cohort. ROC curve analysis of an independent, more heterogeneous group of patients (validation cohorts 2-5; 249 patients after excluding 37 patients with an infection likelihood of "possible") gave an AUC of 0.89 (95% CI 0.85-0.93). Disease severity, as measured by Sequential Organ Failure Assessment (SOFA) score or Acute Physiology and Chronic Health Evaluation (APACHE) IV score, was not a significant confounding variable. The diagnostic utility of SeptiCyte Lab was evaluated by comparison to various clinical and laboratory parameters available to a clinician within 24 h of ICU admission. SeptiCyte Lab was significantly better at differentiating cases from controls than all tested parameters, both singly and in various logistic combinations, and more than halved the diagnostic error rate compared to procalcitonin in all tested cohorts and cohort combinations. Limitations of this study relate to (1) cohort compositions that do not perfectly reflect the composition of the intended use population, (2) potential biases that could be introduced as a result of the current lack of a gold standard for diagnosing sepsis, and (3) lack of a complete, unbiased comparison to C-reactive protein. CONCLUSIONS: SeptiCyte Lab is a rapid molecular assay that may be clinically useful in managing ICU patients with systemic inflammation. Further study in population-based cohorts is needed to validate this assay for clinical use.


Subject(s)
Critical Illness , Diagnostic Techniques and Procedures/instrumentation , Inflammation/diagnosis , Sepsis/diagnosis , Adult , Aged , Aged, 80 and over , Biomarkers/analysis , Case-Control Studies , Cohort Studies , Diagnostic Techniques and Procedures/standards , Female , Humans , Inflammation/etiology , Intensive Care Units , Male , Middle Aged , Netherlands , Queensland , ROC Curve , Reverse Transcriptase Polymerase Chain Reaction , Sepsis/etiology , Young Adult
15.
Int J Surg Case Rep ; 4(10): 825-7, 2013.
Article in English | MEDLINE | ID: mdl-23959409

ABSTRACT

INTRODUCTION: Phlegmasia caerulea dolens (PCD) is a clinical syndrome caused by venous obstruction leading to peripheral limb ischaemia. It can ultimately lead to venous gangrene, amputation or death in 25% of cases. PRESENTATION OF CASE: A 52-year-old man with a background of myeloma developed PCD secondary to an obstructing plasmacytoma and left femoral vein deep vein thrombosis (DVT). These were treated with combined radiotherapy and anticoagulation, with resolution of the patient's symptoms. His recovery was complicated by the development of heparin-induced thrombocytopenia (HIT) and cutaneous vasculitis. DISCUSSION: Both plasmacytoma and DVT are recognised complications of myeloma. This is, to our knowledge, the first description of these phenomena in combination causing PCD. The combination of venous stasis from the obstructing plasmacytoma and hypercoagulability from the underlying myeloma may have contributed to clot formation. A multifaceted treatment approach was required which aimed at improving venous flow via radiotherapy to the plasmacytoma and dissolving the obstructing clot with anticoagulant therapy. CONCLUSION: PCD has a high mortality and morbidity. Recognition is important to avoid an incorrect diagnosis of arterial occlusion and inappropriate surgical intervention. Treatment must be focused on removing the offending causes.

16.
Case Rep Radiol ; 2013: 526421, 2013.
Article in English | MEDLINE | ID: mdl-23984157

ABSTRACT

Neurofibromatosis type 1 (NF1) is a genetic condition, which affects 1 in every 3000 births. Patients with NF1 are at increased risk of a variety of vascular abnormalities. This report presents the case of a 60-year-old male with NF1 who suffered a left external iliac rupture and a right pseudoaneurysm following angioplasty. In addition, these were further complicated by previously undiagnosed, bilateral phaeochromocytomas. The inherent weakness in vessel wall architecture found in NF1 coupled with the hypertension evident during and after the procedure contributed to haemorrhage and pseudoaneurysm formation. Caution must be taken in such patients when considering vascular intervention.

17.
Biomatter ; 3(4)2013.
Article in English | MEDLINE | ID: mdl-23896569

ABSTRACT

Collagen scaffolds have been widely employed as a dermal equivalent to induce fibroblast infiltrations and dermal regeneration in the treatment of chronic wounds and diabetic foot ulcers. Cross-linking methods have been developed to address the disadvantages of the rapid degradation associated with collagen-based scaffolds. To eliminate the potential drawbacks associated with glutaraldehyde cross-linking, methods using a water soluble carbodiimide have been developed. In the present study, the glycosaminoglycan (GAG) hyaluronic acid (HA), was covalently attached to an equine tendon derived collagen scaffold using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) to create ntSPONGE The HA was shown to be homogeneously distributed throughout the collagen matrix. In vitro analyses of the scaffold indicated that the cross-linking enhanced the biological stability by decreasing the enzymatic degradation and increasing the thermal denaturation temperature. The material was shown to support the attachment and proliferation of mouse L929 fibroblast cells. In addition, the cross-linking decreased the resorption rate of the collagen as measured in an intramuscular implant model in rabbits. The material was also shown to be biocompatible in a variety of in vitro and in vivo assays. These results indicate that this cross-linked collagen-HA scaffold, ntSPONGE has the potential for use in chronic wound healing.


Subject(s)
Bandages, Hydrocolloid , Collagen/chemistry , Collagen/toxicity , Fibroblasts/drug effects , Fibroblasts/physiology , Hyaluronic Acid/adverse effects , Hyaluronic Acid/chemistry , Animals , Biocompatible Materials/adverse effects , Biocompatible Materials/chemical synthesis , Cell Line , Cell Survival/drug effects , Cross-Linking Reagents/adverse effects , Cross-Linking Reagents/chemistry , Fibroblasts/cytology , Materials Testing , Mice , Stress, Mechanical , Tensile Strength
18.
J Biophotonics ; 6(10): 821-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23576430

ABSTRACT

We present a novel silicon photonic biosensor using phase-shifted Bragg gratings in a slot waveguide. The optical field is concentrated inside the slot region, leading to efficient light-matter interaction. The Bragg gratings are formed with sidewall corrugations on the outside of the waveguide, and a phase shift is introduced to create a sharp resonant peak within the stop band. We experimentally demonstrate a high sensitivity of 340 nm/RIU measured in salt solutions and a high quality factor of 1.5 × 104, enabling a low intrinsic limit of detection of 3 × 10⁻4 RIU. Furthermore, the silicon device was fabricated by a CMOS foundry, facilitating high-volume and low-cost production. Finally, we demonstrate the device's ability to interrogate specific biomolecular interactions, resulting in the first of its kind label-free biosensor.


Subject(s)
Biosensing Techniques/methods , Photons , Silicon , Biosensing Techniques/instrumentation , Dimethylpolysiloxanes , Microfluidic Analytical Techniques , Optical Phenomena
19.
Opt Express ; 21(7): 7994-8006, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23571890

ABSTRACT

Silicon photonic biosensors are highly attractive for multiplexed Lab-on-Chip systems. Here, we characterize the sensing performance of 3 µm TE-mode and 10 µm dual TE/TM-mode silicon photonic micro-disk resonators and demonstrate their ability to detect the specific capture of biomolecules. Our experimental results show sensitivities of 26 nm/RIU and 142 nm/RIU, and quality factors of 3.3x10(4) and 1.6x10(4) for the TE and TM modes, respectively. Additionally, we show that the large disks contain both TE and TM modes with differing sensing characteristics. Finally, by serializing multiple disks on a single waveguide bus in a CMOS compatible process, we demonstrate a biosensor capable of multiplexed interrogation of biological samples.


Subject(s)
Biopolymers/analysis , Biosensing Techniques/instrumentation , Refractometry/instrumentation , Silicon/chemistry , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis , Miniaturization , Staining and Labeling
20.
Biosens Bioelectron ; 42: 100-5, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23202337

ABSTRACT

A widely acknowledged goal in personalized medicine is to radically reduce the costs of highly parallelized, small fluid volume, point-of-care and home-based diagnostics. Recently, there has been a surge of interest in using complementary metal-oxide-semiconductor (CMOS)-compatible silicon photonic circuits for biosensing, with the promise of producing chip-scale integrated devices containing thousands of orthogonal sensors, at minimal cost on a per-chip basis. A central challenge in biosensor translation is to engineer devices that are both sensitive and specific to a target analyte within unprocessed biological fluids. Despite advances in the sensitivity of silicon photonic biosensors, poor biological specificity at the sensor surface remains a significant factor limiting assay performance in complex media (i.e. whole blood, plasma, serum) due to the non-specific adsorption of proteins and other biomolecules. Here, we chemically modify the surface of silicon microring resonator biosensors for the label-free detection of an analyte in undiluted human plasma. This work highlights the first application of a non-fouling zwitterionic surface coating to enable silicon photonic-based label-free detection of a protein analyte at clinically relevant sensitivities in undiluted human plasma.


Subject(s)
Amino Acid Transport Systems, Neutral/chemistry , Biosensing Techniques , Serum/chemistry , Silicon/chemistry , Humans , Polymers/chemistry , Semiconductors
SELECTION OF CITATIONS
SEARCH DETAIL
...