Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Space Sci Rev ; 219(6): 46, 2023.
Article in English | MEDLINE | ID: mdl-37636325

ABSTRACT

The Galileo mission to Jupiter revealed that Europa is an ocean world. The Galileo magnetometer experiment in particular provided strong evidence for a salty subsurface ocean beneath the ice shell, likely in contact with the rocky core. Within the ice shell and ocean, a number of tectonic and geodynamic processes may operate today or have operated at some point in the past, including solid ice convection, diapirism, subsumption, and interstitial lake formation. The science objectives of the Europa Clipper mission include the characterization of Europa's interior; confirmation of the presence of a subsurface ocean; identification of constraints on the depth to this ocean, and on its salinity and thickness; and determination of processes of material exchange between the surface, ice shell, and ocean. Three broad categories of investigation are planned to interrogate different aspects of the subsurface structure and properties of the ice shell and ocean: magnetic induction, subsurface radar sounding, and tidal deformation. These investigations are supplemented by several auxiliary measurements. Alone, each of these investigations will reveal unique information. Together, the synergy between these investigations will expose the secrets of the Europan interior in unprecedented detail, an essential step in evaluating the habitability of this ocean world.

2.
Nat Commun ; 11(1): 2829, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32546817

ABSTRACT

Saturn's moon Titan has a methane cycle with clouds, rain, rivers, lakes, and seas; it is the only world known to presently have a volatile cycle akin to Earth's tropospheric water cycle. Anomalously specular radar reflections (ASRR) from Titan's tropical region were observed with the Arecibo Observatory (AO) and Green Bank Telescope (GBT) and interpreted as evidence for liquid surfaces. The Cassini spacecraft discovered lakes/seas on Titan, however, it did not observe lakes/seas at the AO/GBT anomalously specular locations. A satisfactory explanation for the ASRR has been elusive for more than a decade. Here we show that the ASRR originate from one terrain unit, likely paleolakes/paleoseas. Titan observations provide ground-truth in the search for oceans on exoearths and an important lesson is that identifying liquid surfaces by specular reflections requires a stringent definition of specular; we propose a definition for this purpose.

3.
Astrobiology ; 18(5): 571-585, 2018 05.
Article in English | MEDLINE | ID: mdl-29718687

ABSTRACT

Saturn's moon Titan has all the ingredients needed to produce "life as we know it." When exposed to liquid water, organic molecules analogous to those found on Titan produce a range of biomolecules such as amino acids. Titan thus provides a natural laboratory for studying the products of prebiotic chemistry. In this work, we examine the ideal locales to search for evidence of, or progression toward, life on Titan. We determine that the best sites to identify biological molecules are deposits of impact melt on the floors of large, fresh impact craters, specifically Sinlap, Selk, and Menrva craters. We find that it is not possible to identify biomolecules on Titan through remote sensing, but rather through in situ measurements capable of identifying a wide range of biological molecules. Given the nonuniformity of impact melt exposures on the floor of a weathered impact crater, the ideal lander would be capable of precision targeting. This would allow it to identify the locations of fresh impact melt deposits, and/or sites where the melt deposits have been exposed through erosion or mass wasting. Determining the extent of prebiotic chemistry within these melt deposits would help us to understand how life could originate on a world very different from Earth. Key Words: Titan-Prebiotic chemistry-Solar system exploration-Impact processes-Volcanism. Astrobiology 18, 571-585.


Subject(s)
Biosensing Techniques/methods , Exobiology/methods , Extraterrestrial Environment , Saturn , Amino Acids/analysis , Atmosphere/analysis , Freezing , Geologic Sediments/analysis , Water/analysis
4.
Science ; 324(5929): 921-3, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19342551

ABSTRACT

Cassini observations show that Saturn's moon Titan is slightly oblate. A fourth-order spherical harmonic expansion yields north polar, south polar, and mean equatorial radii of 2574.32 +/- 0.05 kilometers (km), 2574.36 +/- 0.03 km, and 2574.91 +/- 0.11 km, respectively; its mean radius is 2574.73 +/- 0.09 km. Titan's shape approximates a hydrostatic, synchronously rotating triaxial ellipsoid but is best fit by such a body orbiting closer to Saturn than Titan presently does. Titan's lack of high relief implies that most--but not all--of the surface features observed with the Cassini imaging subsystem and synthetic aperture radar are uncorrelated with topography and elevation. Titan's depressed polar radii suggest that a constant geopotential hydrocarbon table could explain the confinement of the hydrocarbon lakes to high latitudes.


Subject(s)
Saturn , Extraterrestrial Environment , Hydrocarbons
5.
Science ; 322(5907): 1532-5, 2008 Dec 05.
Article in English | MEDLINE | ID: mdl-19056983

ABSTRACT

Widespread sedimentary rocks on Mars preserve evidence of surface conditions different from the modern cold and dry environment, although it is unknown how long conditions favorable to deposition persisted. We used 1-meter stereo topographic maps to demonstrate the presence of rhythmic bedding at several outcrops in the Arabia Terra region. Repeating beds are approximately 10 meters thick, and one site contains hundreds of meters of strata bundled into larger units at a approximately 10:1 thickness ratio. This repetition likely points to cyclicity in environmental conditions, possibly as a result of astronomical forcing. If deposition were forced by orbital variation, the rocks may have been deposited over tens of millions of years.


Subject(s)
Mars , Extraterrestrial Environment , Geologic Sediments
6.
Science ; 319(5870): 1649-51, 2008 Mar 21.
Article in English | MEDLINE | ID: mdl-18356521

ABSTRACT

Cassini radar observations of Saturn's moon Titan over several years show that its rotational period is changing and is different from its orbital period. The present-day rotation period difference from synchronous spin leads to a shift of approximately 0.36 degrees per year in apparent longitude and is consistent with seasonal exchange of angular momentum between the surface and Titan's dense superrotating atmosphere, but only if Titan's crust is decoupled from the core by an internal water ocean like that on Europa.


Subject(s)
Saturn , Water , Atmosphere , Extraterrestrial Environment , Ice , Spacecraft , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...