Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Endocr Connect ; 13(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38078917

ABSTRACT

Endometriosis and polycystic ovary syndrome (PCOS) are common gynecological disorders that constitute a significant burden of disease in women of fertile age. The disorders share a link to female reproduction and infertility; however, divergent effects on menstrual cycle, related hormones, and body composition have been proposed. Disorders of the thyroid gland including abnormal thyroid dysfunction (hyperthyroidism or hypothyroidism) and/or markers of thyroid autoimmunity similarly show a female predominance and onset in younger age groups. We reviewed the literature on the association between endometriosis, PCOS, and thyroid disease up until July 1, 2023, and identified 8 original studies on endometriosis and thyroid disease and 30 original studies on PCOS and thyroid disease. The studies were observational and heterogeneous regarding the design, sample size, and definitions of exposure and outcome; however, a tendency was seen toward an association between hyperthyroidism and endometriosis. Especially an association between endometriosis and slightly elevated levels of thyroid-stimulating hormone receptor antibodies has been found and corroborated in studies from different populations. On the other hand, the literature review turned a focus toward an association between hypothyroidism and PCOS, however, with uncertainties as to whether the association is caused by hypothyroidism per se and/or the thyroid autoantibodies (thyroid peroxidase and thyroglobulin antibodies). More evidence is needed to substantiate an association between endometriosis, PCOS, and thyroid disease, and to differentiate between the role of thyroid function and thyroid autoimmunity. Furthermore, studies are warranted to extend knowledge on the different disease characteristics and underlying mechanisms.

2.
Cell Physiol Biochem ; 38(3): 883-92, 2016.
Article in English | MEDLINE | ID: mdl-26909737

ABSTRACT

BACKGROUND/AIMS: The potential role of the two-pore domain potassium channel KCNK5 (also known as TASK-2 and K(2P)5.1) in activated T cell physiology has only recently been described. So far KCNK5 has been described to be up-regulated in T cells in multiple sclerosis patients and to be implicated in the volume regulatory mechanism regulatory volume decrease (RVD) in T cells. METHODS: We investigated the time-dependent expression pattern of KCNK5 in CD3/CD28 activated human T cells using qPCR and Western blotting and its role in RVD using a Coulter Counter. RESULTS: KCNK5 is highly up-regulated in CD3/CD28 activated T cells both at mRNA (after 24 h) and protein level (72 and 144 h), but despite this up-regulation the RVD response is inhibited. Furthermore, the swelling-activated Cl- permeability in activated T cells is strongly decreased, and the RVD inhibition is predominantly due to the decreased Cl- permeability. CONCLUSION: The up-regulated KCNK5 in activated human T cells does not play a volume regulatory role, due to decreased Cl- permeability. We speculate that the KCNK5 up-regulation might play a role in hyperpolarization of the cell membrane leading to increased Ca2+ influx and proliferation of T cells.


Subject(s)
Lymphocyte Activation , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism , T-Lymphocytes/metabolism , Up-Regulation , CD28 Antigens/metabolism , CD3 Complex/pharmacology , Calcium/metabolism , Cell Size/drug effects , Chlorine/metabolism , Humans , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics
3.
Cell Physiol Biochem ; 32(5): 1238-46, 2013.
Article in English | MEDLINE | ID: mdl-24247225

ABSTRACT

BACKGROUND/AIMS: Regulatory volume decrease (RVD) in response to acute cell swelling is well described and KCNK5 (also known as TASK-2 or K2P5.1) has been shown to be the volume sensitive K(+) channel in Ehrlich cells. Very little is, on the other hand, known about the effects of long-term hypotonicity on expression and function of KCNK5, thus we have investigated the effect of long-term hypotonicity (24h - 48h) on KCNK5 in Ehrlich cells on the mRNA, protein and physiological levels. METHODS: Physiological effects of long-term hypotonicity were measured using patch-clamp and Coulter counter techniques. Expression patterns of KCNK5 on mRNA and protein levels were established using real-time qPCR and western blotting respectively. RESULTS: The maximum swelling-activated current through KCNK5 was significantly decreased upon 48h of hypotonicity and likewise the RVD response was significantly impaired after both 24 and 48h of hypotonic stimulation. No significant differences in the KCNK5 mRNA expression patterns between control and stimulated cells were observed, but a significant decrease in the KCNK5 protein level 48h after stimulation was found. CONCLUSION: The data suggest that the strong physiological impairment of KCNK5 in Ehrlich cells after long-term hypotonic stimulation is predominantly due to down-regulation of the KCNK5 protein synthesis.


Subject(s)
Carcinoma, Ehrlich Tumor/metabolism , Osmotic Pressure/physiology , Potassium Channels, Tandem Pore Domain/metabolism , Animals , Carcinoma, Ehrlich Tumor/pathology , Cell Size , Down-Regulation , Gene Expression Regulation , Mice , Patch-Clamp Techniques , Potassium Channels, Tandem Pore Domain/genetics , Tumor Cells, Cultured
4.
Am J Physiol Cell Physiol ; 299(4): C844-53, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20631251

ABSTRACT

The swelling-activated K(+) currents (I(K,vol)) in Ehrlich ascites tumor cells (EATC) has been reported to be through the two-pore domain (K(2p)), TWIK-related acid-sensitive K(+) channel 2 (TASK-2). The regulatory volume decrease (RVD), following hypotonic exposure in EATC, is rate limited by I(K,vol) indicating that inhibition of RVD reflects inhibition of TASK-2. We find that in EATC the tyrosine kinase inhibitor genistein inhibits RVD by 90%, and that the tyrosine phosphatase inhibitor monoperoxo(picolinato)-oxo-vanadate(V) [mpV(pic)] shifted the volume set point for inactivation of the channel to a lower cell volume. Swelling-activated K(+) efflux was impaired by genistein and the Src kinase family inhibitor 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) and enhanced by the tyrosine phosphatase inhibitor mpV(pic). With the use of the TASK-2 inhibitor clofilium, it is demonstrated that mpV(pic) increased the volume-sensitive part of the K(+) efflux 1.3 times. To exclude K(+) efflux via a KCl cotransporter, cellular Cl(-) was substituted with NO(3)(-). Also under these conditions K(+) efflux was completely blocked by genistein. Thus tyrosine kinases seem to be involved in the activation of the volume-sensitive K(+) channel, whereas tyrosine phosphatases appears to be involved in inactivation of the channel. Overexpressing TASK-2 in human embryonic kidney (HEK)-293 cells increased the RVD rate and reduced the volume set point. TASK-2 has tyrosine sites, and precipitation of TASK-2 together with Western blotting and antibodies against phosphotyrosines revealed a cell swelling-induced, time-dependent tyrosine phosphorylation of the channel. Even though we found an inhibiting effect of PP2 on RVD, neither Src nor the focal adhesion kinase (FAK) seem to be involved. Inhibitors of the epidermal growth factor receptor tyrosine kinases had no effect on RVD, whereas the Janus kinase (JAK) inhibitor cucurbitacin inhibited the RVD by 40%. It is suggested that the cytokine receptor-coupled JAK/STAT pathway is upstream of the swelling-induced phosphorylation and activation of TASK-2 in EATC.


Subject(s)
Cell Size , Potassium Channels, Tandem Pore Domain/metabolism , Signal Transduction/physiology , Tyrosine/metabolism , Animals , Cell Line , Enzyme Inhibitors/metabolism , Female , Genistein/metabolism , Humans , Hypotonic Solutions , Janus Kinases/metabolism , Mice , Patch-Clamp Techniques , Phosphorylation , Potassium/metabolism , Potassium Channels, Tandem Pore Domain/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , STAT Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...