Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Biochimie ; 176: 181-191, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32717409

ABSTRACT

The ribosomal protein P2 of Plasmodium falciparum, (PfP2), performs certain unique extra-ribosomal functions. During the few hours of cell-division, PfP2 protein moves to the external surface of the infected erythrocytes (IE) as an SDS-resistant oligomer, and at that stage treatment with specific anti- PfP2 antibodies results in an arrest of the parasite cell-division. Amongst the oligomeric forms of PfP2, mainly the homo-tetramer is peripherally anchored on the external surface of the IE. To study the anchoring of PfP2 tetramer on IE-surface, we have explored the binding properties of PfP2 protein. Using NMR and erythrocyte pull-down studies, here we report that the homo-tetrameric PfP2 protein interacted specifically with erythrocytes and not leukocytes. The hydrophobic N-terminal 72 amino acid region is the major interacting domain. The binding of P2 to RBCs was neuraminidase resistant, but trypsin sensitive. The RBC binding was exclusive to the Plasmodium PfP2 protein as even the homologous protein of the closely related Apicomplexan parasite Toxoplasma gondii TgP2 protein did not interact with erythrocytes. Pull down assays, immunoprecipitation and mass spectrometry data showed that erythrocytic Band 3 protein is a possible interactor of Plasmodium PfP2 protein on the erythrocyte surface.


Subject(s)
Erythrocytes/chemistry , Plasmodium falciparum/chemistry , Protozoan Proteins/chemistry , Ribosomal Proteins/chemistry , Erythrocytes/metabolism , Humans , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Ribosomal Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...