Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 268
Filter
1.
Behav Neurosci ; 138(1): 59-71, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38127524

ABSTRACT

Drug exposure during adolescence, when the "reward" circuitry of the brain is developing, can permanently impact reward-related behavior into adulthood. Epidemiological studies show that opioid treatment during adolescence, such as pain management for a dental procedure or surgery, increases the incidence of psychiatric illness including substance use disorders. Moreover, the opioid epidemic currently in the United States is affecting younger individuals raising the impetus to understand the pathogenesis of the negative effects of opioids. One reward-related behavior that develops during adolescence is social behavior. We previously demonstrated that developmental changes in the nucleus accumbens reward region regulate social development in rats during sex-specific adolescent periods: early to mid-adolescence in males (postnatal day, P30-40) and preearly adolescence in females (P20-30). We thus hypothesized that the developmental stage of morphine exposure will differentially impact social behavior development such that drug administered during the female critical period would result in adult sociability deficits in females, but not males, and morphine administered during the male critical period would result in adult sociability deficits in males, but not females. We found that morphine exposure during the female critical period primarily resulted in deficits in sociability in females, while morphine exposure during the male critical period primarily resulted in deficits in sociability primarily in males. However, depending on the test performed and the social parameter measured, social alterations could be found in both sexes that received morphine exposure at either adolescent stage. These data indicate that when drug exposure occurs during adolescence, and how the endpoint data are measured, will play a large role in determining the effects of drug exposures on social development. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Morphine , Social Change , Rats , Female , Male , Animals , Morphine/pharmacology , Analgesics, Opioid/pharmacology , Social Behavior , Nucleus Accumbens
2.
Aging Cell ; 22(12): e14011, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37969056

ABSTRACT

Accurate biomarkers for predicting COVID-19 severity have remained an unmet need due to an incomplete understanding of virus pathogenesis and heterogeneity among patients. Cellular senescence and its pro-inflammatory phenotype are suggested to be a consequence of SARS-CoV-2 infection and potentially drive infection-dependent pathological sequelae. Senescence-associated markers in infected individuals have been identified primarily in the lower respiratory tract, while little is known about their presence in more easily accessible bio-specimens. Here, we measured the abundance of senescence-associated signatures in whole blood, plasma and peripheral blood mononuclear cells (PBMCs) of COVID-19 patients and patients without an infection. Bulk transcriptomic and targeted proteomic assays revealed that the level of senescence-associated markers, including the senescence-associated secretory phenotype (SASP), is predictive of SARS-CoV-2 infection. Single-cell RNA-sequencing data demonstrated that a senescence signature is particularly enriched in monocytes of COVID-19 patients, partially correlating with disease severity. Our findings suggest that monocytes are prematurely induced to senescence by SARS-CoV-2 infection, might contribute to exacerbating a SASP-like inflammatory response and can serve as markers and predictors for COVID-19 and its sequelae.


Subject(s)
COVID-19 , Monocytes , Humans , Leukocytes, Mononuclear , Proteomics , SARS-CoV-2 , Disease Progression
3.
bioRxiv ; 2023 May 05.
Article in English | MEDLINE | ID: mdl-37205376

ABSTRACT

Strong social support promotes a variety of positive health outcomes in humans and rodent models, while social isolation in rodents shortens lifespan, perceived social isolation (i.e. loneliness) can increase mortality by up to 50% in humans. How social relationships lead to these drastic health effects is unclear, but may involve modulation of the peripheral immune system. The reward circuitry of the brain and social behaviors undergo a critical period of development during adolescence. We published that microglia-mediated synaptic pruning occurs in the nucleus accumbens (NAc) reward region during adolescence to mediate social development in male and female rats. We hypothesized that if reward circuitry activity and social relationships directly impact the peripheral immune system, then natural developmental changes in the reward circuitry and social behaviors during adolescence should also directly impact the peripheral immune system. To test this, we inhibited microglial pruning in the NAc during adolescence, and then collected spleen tissue for mass spectrometry proteomic analysis and ELISA validation. We found that the global proteomic consequences of inhibiting microglial pruning in the NAc were similar between the sexes, but target-specific examination suggests that NAc pruning impacts Th1 cell-related immune markers in the spleen in males, but not females, and broad neurochemical systems in the spleen in females, but not males.

4.
bioRxiv ; 2023 May 03.
Article in English | MEDLINE | ID: mdl-37205455

ABSTRACT

Adolescence is a period of copious neural development, particularly in the 'reward' circuitry of the brain, and reward-related behavioral development, including social development. One neurodevelopmental mechanism that appears to be common across brain regions and developmental periods is the requirement for synaptic pruning to produce mature neural communication and circuits. We published that microglia-C3-mediated synaptic pruning also occurs in the nucleus accumbens (NAc) reward region during adolescence to mediate social development in male and female rats. However, both the adolescent stage in which microglial pruning occurred, and the synaptic pruning target, were sex specific. NAc pruning occurred between early and mid-adolescence in male rats to eliminate dopamine D1 receptors (D1rs), and between pre- and early adolescence in female rats (P20-30) to eliminate an unknown, non-D1r target. In this report, we sought to better understand the proteomic consequences of microglial pruning in the NAc, and what the female pruning target might be. To do this, we inhibited microglial pruning in the NAc during each sex's pruning period and collected tissue for mass spectrometry proteomic analysis and ELISA validation. We found that the proteomic consequences of inhibiting microglial pruning in the NAc were inversely proportional between the sexes, and a novel, female-specific pruning target may be Lynx1. Please note, if this preprint will be pushed further to publication it will not be by me (AMK), as I am leaving academia. So, I'm going to write more conversationally.

5.
bioRxiv ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37162856

ABSTRACT

Social networks and support are integral to health and wellness across the lifespan, and social engagement may be particularly important during aging. However, social behavior and social cognition decline naturally during aging across species. Social behaviors are in part supported by the 'reward' circuitry, a network of brain regions that develops during adolescence. We published that male and female rats undergo adolescent social development during sex-specific periods, pre-early adolescence in females and early-mid adolescence males. Although males and females have highly dimorphic development, expression, and valuation of social behaviors, there is relatively little data indicating whether social aging is the same or different between the sexes. Thus, we sought to test two hypotheses: (1) natural social aging will be sex-speciifc, and (2) social isolation stress restricted to sex-specific adolescent critical periods for social development would impact social aging in sex-specific ways. To do this, we bred male and female rats in-house, and divided them randomly to receive either social isolation for one week during each sex's respective critical period, or no manipulation. We followed their social aging trajectory with a battery of five tests at 3, 7, and 11 months of age. We observed clear social aging signatures in all tests administered, but sex differences in natural social aging were most robustly observed when a familiar social stimulus was included in the test. We also observed that adolescent isolation did impact social behavior, in both age-independent and age-dependent ways, that were entirely sex-specific. Please note, this preprint will not be pushed further to publication (by me, AMK), as I am leaving academia. So, it's going to be written more conversationally.

6.
bioRxiv ; 2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37131669

ABSTRACT

Drug exposure during adolescence, when the 'reward' circuitry of the brain is developing, can permanently impact reward-related behavior. Epidemiological studies show that opioid treatment during adolescence, such as pain management for a dental procedure or surgery, increases the incidence of psychiatric illness including substance use disorders. Moreover, the opioid epidemic currently in the United States is affecting younger individuals raising the impetus to understand the pathogenesis of the negative effects of opioids. One reward-related behavior that develops during adolescence is social behavior. We previously demonstrated that social development occurs in rats during sex-specific adolescent periods: early to mid-adolescence in males (postnatal day (P)30-40) and pre-early adolescence in females (P20-30). We thus hypothesized that morphine exposure during the female critical period would result in adult sociability deficits in females, but not males, and morphine administered during the male critical period would result in adult sociability deficits in males, but not females. We found that morphine exposure during the female critical period primarily resulted in deficits in sociability in females, while morphine exposure during the male critical period primarily resulted in deficits in sociability primarily in males. However, depending on the test performed and the social parameter measured, social alterations could be found in both sexes that received morphine exposure at either adolescent stage. These data indicate that when drug exposure occurs during adolescence, and how the endpoint data are measured, will play a large role in determining the effects of drug exposures on social development.

7.
J Prev Alzheimers Dis ; 9(1): 22-29, 2022.
Article in English | MEDLINE | ID: mdl-35098970

ABSTRACT

Preclinical studies indicate an age-associated accumulation of senescent cells across multiple organ systems. Emerging evidence suggests that tau protein accumulation, which closely correlates with cognitive decline in Alzheimer's disease and other tauopathies, drives cellular senescence in the brain. Pharmacologically clearing senescent cells in mouse models of tauopathy reduced brain pathogenesis. Compared to vehicle treated mice, intermittent senolytic administration reduced tau accumulation and neuroinflammation, preserved neuronal and synaptic density, restored aberrant cerebral blood flow, and reduced ventricular enlargement. Intermittent dosing of the senolytics, dasatinib plus quercetin, has shown an acceptable safety profile in clinical studies for other senescence-associated conditions. With these data, we proposed and herein describe the objectives and methods for a clinical vanguard study. This initial open-label clinical trial pilots an intermittent senolytic combination therapy of dasatinib plus quercetin in five older adults with early-stage Alzheimer's disease. The primary objective is to evaluate the central nervous system penetration of dasatinib and quercetin through analysis of cerebrospinal fluid collected at baseline and after 12 weeks of treatment. Further, through a series of secondary outcome measures to assess target engagement of the senolytic compounds and Alzheimer's disease-relevant cognitive, functional, and physical outcomes, we will collect preliminary data on safety, feasibility, and efficacy. The results of this study will be used to inform the development of a randomized, double-blind, placebo-controlled multicenter phase II trial to further explore of the safety, feasibility, and efficacy of senolytics for modulating the progression of Alzheimer's disease. Clinicaltrials.gov registration number and date: NCT04063124 (08/21/2019).


Subject(s)
Alzheimer Disease , Tauopathies , Aged , Animals , Cellular Senescence , Dasatinib/pharmacology , Dasatinib/therapeutic use , Humans , Mice , Senotherapeutics
8.
J Intern Med ; 288(5): 518-536, 2020 11.
Article in English | MEDLINE | ID: mdl-32686219

ABSTRACT

Senolytics are a class of drugs that selectively clear senescent cells (SC). The first senolytic drugs Dasatinib, Quercetin, Fisetin and Navitoclax were discovered using a hypothesis-driven approach. SC accumulate with ageing and at causal sites of multiple chronic disorders, including diseases accounting for the bulk of morbidity, mortality and health expenditures. The most deleterious SC are resistant to apoptosis and have up-regulation of anti-apoptotic pathways which defend SC against their own inflammatory senescence-associated secretory phenotype (SASP), allowing them to survive, despite killing neighbouring cells. Senolytics transiently disable these SCAPs, causing apoptosis of those SC with a tissue-destructive SASP. Because SC take weeks to reaccumulate, senolytics can be administered intermittently - a 'hit-and-run' approach. In preclinical models, senolytics delay, prevent or alleviate frailty, cancers and cardiovascular, neuropsychiatric, liver, kidney, musculoskeletal, lung, eye, haematological, metabolic and skin disorders as well as complications of organ transplantation, radiation and cancer treatment. As anticipated for agents targeting the fundamental ageing mechanisms that are 'root cause' contributors to multiple disorders, potential uses of senolytics are protean, potentially alleviating over 40 conditions in preclinical studies, opening a new route for treating age-related dysfunction and diseases. Early pilot trials of senolytics suggest they decrease senescent cells, reduce inflammation and alleviate frailty in humans. Clinical trials for diabetes, idiopathic pulmonary fibrosis, Alzheimer's disease, COVID-19, osteoarthritis, osteoporosis, eye diseases and bone marrow transplant and childhood cancer survivors are underway or beginning. Until such studies are done, it is too early for senolytics to be used outside of clinical trials.


Subject(s)
Betacoronavirus , Cellular Senescence/drug effects , Coronavirus Infections/drug therapy , Drug Development , Drug Discovery , Pneumonia, Viral/drug therapy , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/pathology , Humans , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , SARS-CoV-2 , Translational Research, Biomedical , COVID-19 Drug Treatment
9.
Nat Commun ; 10(1): 5235, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31748506

ABSTRACT

Ferroic materials are well known to exhibit heterogeneity in the form of domain walls. Understanding the properties of these boundaries is crucial for controlling functionality with external stimuli and for realizing their potential for ultra-low power memory and logic devices as well as novel computing architectures. In this work, we employ synchrotron-based near-field infrared nano-spectroscopy to reveal the vibrational properties of ferroelastic (90[Formula: see text] ferroelectric) domain walls in the hybrid improper ferroelectric Ca[Formula: see text]Ti[Formula: see text]O[Formula: see text]. By locally mapping the Ti-O stretching and Ti-O-Ti bending modes, we reveal how structural order parameters rotate across a wall. Thus, we link observed near-field amplitude changes to underlying structural modulations and test ferroelectric switching models against real space measurements of local structure. This initiative opens the door to broadband infrared nano-imaging of heterogeneity in ferroics.

10.
J Frailty Aging ; 8(3): 106-116, 2019.
Article in English | MEDLINE | ID: mdl-31237310

ABSTRACT

The Canadian Frailty Network (CFN), a pan-Canadian not-for-profit organization funded by the Government of Canada through the Networks of Centres of Excellence Program, is dedicated to improving the care of older Canadians living with frailty. The CFN has partnered with the Canadian Longitudinal Study on Aging (CLSA) to measure potential frailty biomarkers in biological samples (whole blood, plasma, urine) collected in over 30,000 CLSA participants. CFN hosted a workshop in Toronto on January 15 2018, bringing together experts in the field of biomarkers, aging and frailty. The overall objectives of the workshop were to start building a consensus on potential frailty biomarker domains and identify specific frailty biomarkers to be measured in the CLSA biological samples. The workshop was structured with presentations in the morning to frame the discussions for the afternoon session, which was organized as a free-flowing discussion to benefit from the expertise of the participants. Participants and speakers were from Canada, Italy, Spain, United Kingdom and the United States. Herein we provide pertinent background information, a summary of all the presentations with key figures and tables, and the distillation of the discussions. In addition, moving forward, the principles CFN will use to approach frailty biomarker research and development are outlined. Findings from the workshop are helping CFN and CLSA plan and conduct the analysis of biomarkers in the CLSA samples and which will inform a follow-up data access competition.


Subject(s)
Biomarkers , Frailty/diagnosis , Aged , Canada , Frail Elderly , Humans , Longitudinal Studies , Prognosis , Risk Assessment
11.
Am J Phys Anthropol ; 165(3): 457-470, 2018 03.
Article in English | MEDLINE | ID: mdl-29154456

ABSTRACT

OBJECTIVES: Analyses of bone cross-sectional geometry are frequently used by anthropologists and paleontologists to infer the loading histories of past populations. To address some underlying assumptions, we investigated the relative roles of genetics and exercise on bone cross-sectional geometry and bending mechanics in three mouse strains: high bone density (C3H/He), low bone density (C57BL/6), and a high-runner strain homozygous for the Myh4Minimsc allele (MM). METHODS AND MATERIALS: Weanlings of each strain were divided into exercise (wheel) or control (sedentary) treatment groups for a 7-week experimental period. Morphometrics of the femoral mid-diaphysis and mechanical testing were used to assess both theoretical and ex vivo bending mechanics. RESULTS: Across all measured morphological and bending traits, we found relatively small effects of exercise treatment compared to larger and more frequent interstrain differences. In the exercised group, total distance run over the experimental period was not a predictor of any morphological or bending traits. Cross-sectional geometry did not accurately predict bone response to loading. DISCUSSION: Results from this experimental model do not support hypothesized associations among extreme exercise, cross-sectional geometry, and bending mechanics. Our results suggest that analysis of cross-sectional geometry alone is insufficient to predict loading response, and questions the common assumption that cross-sectional geometry differences are indicative of differential loading history.


Subject(s)
Femur/anatomy & histology , Femur/physiology , Physical Conditioning, Animal/physiology , Anatomy, Cross-Sectional , Animals , Anthropology, Physical , Biomechanical Phenomena/physiology , Diaphyses/anatomy & histology , Diaphyses/physiology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Weight-Bearing/physiology
12.
Acta Physiol (Oxf) ; 222(3)2018 03.
Article in English | MEDLINE | ID: mdl-29032602

ABSTRACT

AIM: Muscle wasting is one of the factors most strongly predicting mortality and morbidity in critically ill intensive care unit (ICU). This muscle wasting affects both limb and respiratory muscles, but the understanding of underlying mechanisms and muscle-specific differences remains incomplete. This study aimed at investigating the temporal expression and phosphorylation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway in muscle wasting associated with the ICU condition to characterize the JAK/STAT proteins and the related changes leading or responding to their activation during exposure to the ICU condition. METHODS: A novel experimental ICU model allowing long-term exposure to the ICU condition, immobilization and mechanical ventilation, was used in this study. Rats were pharmacologically paralysed by post-synaptic neuromuscular blockade and mechanically ventilated for durations varying between 6 hours and 14 days to study muscle-specific differences in the temporal activation of the JAK/STAT pathway in plantaris, intercostal and diaphragm muscles. RESULTS: The JAK2/STAT3 pathway was significantly activated irrespective of muscle, but muscle-specific differences were observed in the temporal activation pattern between plantaris, intercostal and diaphragm muscles. CONCLUSION: The JAK2/STAT3 pathway was differentially activated in plantaris, intercostal and diaphragm muscles in response to the ICU condition. Thus, JAK2/STAT3 inhibitors may provide an attractive pharmacological intervention strategy in immobilized ICU patients, but further experimental studies are required in the study of muscle-specific effects on muscle mass and function in response to both short- and long-term exposure to the ICU condition prior to the translation into clinical research and practice.


Subject(s)
Janus Kinase 2/metabolism , Muscle, Skeletal/metabolism , Respiration, Artificial/adverse effects , Restraint, Physical/adverse effects , STAT3 Transcription Factor/metabolism , Animals , Female , Muscle, Skeletal/pathology , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Phosphorylation , Rats , Rats, Sprague-Dawley
13.
Ageing Res Rev ; 35: 241-249, 2017 May.
Article in English | MEDLINE | ID: mdl-27721062

ABSTRACT

The first clinical trial aimed at targeting fundamental processes of aging will soon be launched (TAME: Targeting Aging with Metformin). In its wake is a robust pipeline of therapeutic interventions that have been demonstrated to extend lifespan or healthspan of preclinical models, including rapalogs, antioxidants, anti-inflammatory agents, and senolytics. This ensures that if the TAME trial is successful, numerous additional clinical trials are apt to follow. But a significant impediment to these trials remains the question of what endpoints should be measured? The design of the TAME trial very cleverly skirts around this based on the fact that there are decades of data on metformin in humans, providing unequaled clarity of what endpoints are most likely to yield a positive outcome. But for a new chemical entity, knowing what endpoints to measure remains a formidable challenge. For economy's sake, and to achieve results in a reasonable time frame, surrogate markers of lifespan and healthy aging are desperately needed. This review provides a comprehensive analysis of molecular endpoints that are currently being used as indices of age-related phenomena (e.g., morbidity, frailty, mortality) and proposes an approach for validating and prioritizing these endpoints.


Subject(s)
Aging , Biomarkers/analysis , Longevity/physiology , Aging/pathology , Aging/physiology , Aging/psychology , Humans , Life Expectancy , Pathology, Molecular/methods
14.
J Frailty Aging ; 5(4): 204-207, 2016.
Article in English | MEDLINE | ID: mdl-27883166

ABSTRACT

Rapamycin, an mTOR inhibitor affects senescence through suppression of senescence-associated secretory phenotype (SASP). We studied the safety and feasibility of low-dose rapamycin and its effect on SASP and frailty in elderly undergoing cardiac rehabilitation (CR). 13 patients; 6 (0.5mg), 6 (1.0mg), and 1 patient received 2mg oral rapamycin (serum rapamycin <6ng/ml) daily for 12 weeks. Median age was 73.9±7.5 years and 12 were men. Serum interleukin-6 decreased (2.6 vs 4.4 pg/ml) and MMP-3 (26 vs 23.5 ng/ml) increased. Adipose tissue expression of mRNAs (arbitrary units) for MCP-1 (3585 vs 2020, p=0.06), PPAR-γ (1257 vs 1166), PAI-1 (823 vs 338, p=0.08) increased, whereas interleukin-8 (163 vs 312), TNF-α (75 vs 94) and p16 (129 vs 169) decreased. Cellular senescence-associated beta galactosidase activity (2.2% vs 3.6%, p=0.18) tended to decrease. We observed some correlation between some senescence markers and physical performance but no improvement in frailty with rapamycin was noted. (NCT01649960).


Subject(s)
Aging/metabolism , Coronary Artery Disease/metabolism , Immunosuppressive Agents/administration & dosage , Sirolimus/administration & dosage , Adipose Tissue/metabolism , Aged , Aged, 80 and over , Cellular Senescence , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Coronary Artery Disease/surgery , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Female , Frail Elderly , Gait , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/genetics , Male , Matrix Metalloproteinase 3/metabolism , PPAR gamma/genetics , Percutaneous Coronary Intervention , Phenotype , Pilot Projects , Plasminogen Activator Inhibitor 1/genetics , RNA, Messenger/metabolism , Treatment Outcome , Tumor Necrosis Factor-alpha/genetics , Walk Test , beta-Galactosidase/genetics
15.
Transplant Proc ; 48(6): 1911-5, 2016.
Article in English | MEDLINE | ID: mdl-27569921

ABSTRACT

INTRODUCTION: Previous studies suggest that large signature size is associated with narcissistic characteristics. By contrast, organ donation is an indicator of altruism. Because altruism and narcissism may be viewed as opposites, we sought to determine if smaller signature size is associated with willingness to be an organ donor. METHODS: Using a cross-sectional study design, we reviewed the health records of 571 randomly selected primary care patients at a large urban safety-net medical system to obtain their demographic and medical characteristics. We also examined driver's licenses that were scanned into electronic health records as part of the patient registration process. We measured signature sizes and obtained the organ donor designation from these driver's licenses. RESULTS: Overall, 256 (45%) patients were designated as donors on their driver's licenses. Signature size averaged 113.3 mm(2) but varied greatly across patients (10th percentile 49.1 mm(2), 90th percentile 226.1 mm(2)). On multivariate analysis, donor designation was positively associated with age 18-34 years, non-black race, having private insurance, and not having any comorbid conditions. However, signature size was not associated with organ donor designation. CONCLUSIONS: Signature size is not associated with verified organ donor designation. Further work is needed to understand the relationship between personality types and willingness to be an organ donor.


Subject(s)
Tissue Donors/statistics & numerical data , Tissue and Organ Procurement/methods , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged
17.
Am J Transplant ; 16(4): 1294-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26603147

ABSTRACT

Previous studies on the correlates of organ donation consent have focused on self-reported willingness to donate and on self-reported medical suitability to donate. However, these may be subject to social desirability bias and inaccurate assessments of medical suitability. The authors sought to overcome these limitations by directly verifying donor designation on driver's licenses and by abstracting comorbid conditions from electronic health records. Using a cross-sectional study design, they reviewed the health records of 2070 randomly selected primary care patients at a large urban safety-net medical system to obtain demographic and medical characteristics. They also examined driver's licenses that were scanned into electronic health records as part of the patient registration process for donor designation. Overall, 943 (46%) patients were designated as a donor on their driver's license. On multivariate analysis, donor designation was positively associated with age 35-54 years, female sex, nonblack race, speaking English or Spanish, being employed, having private insurance, having an income >$45 000, and having fewer comorbid conditions. These demographic and medical characteristics resulted in patient subgroups with donor designation rates ranging from 21% to 75%. In conclusion, patient characteristics are strongly related to verified donor designation. Further work should tailor organ donation efforts to specific subgroups.


Subject(s)
Demography , Medical Records , Organ Transplantation/standards , Tissue Donors , Tissue and Organ Procurement/standards , Adult , Cross-Sectional Studies , Employment , Female , Follow-Up Studies , Humans , Income , Male , Middle Aged
18.
J Chromatogr A ; 1395: 57-64, 2015 May 22.
Article in English | MEDLINE | ID: mdl-25890437

ABSTRACT

Column selectivity in reversed-phase chromatography (RPC) can be described in terms of the hydrophobic-subtraction model, which recognizes five solute-column interactions that together determine solute retention and column selectivity: hydrophobic, steric, hydrogen bonding of an acceptor solute (i.e., a hydrogen-bond base) by a stationary-phase donor group (i.e., a silanol), hydrogen bonding of a donor solute (e.g., a carboxylic acid) by a stationary-phase acceptor group, and ionic. Of these five interactions, hydrogen bonding between donor solutes (acids) and stationary-phase acceptor groups is the least well understood; the present study aims at resolving this uncertainty, so far as possible. Previous work suggests that there are three distinct stationary-phase sites for hydrogen-bond interaction with carboxylic acids, which we will refer to as column basicity I, II, and III. All RPC columns exhibit a selective retention of carboxylic acids (column basicity I) in varying degree. This now appears to involve an interaction of the solute with a pair of vicinal silanols in the stationary phase. For some type-A columns, an additional basic site (column basicity II) is similar to that for column basicity I in primarily affecting the retention of carboxylic acids. The latter site appears to be associated with metal contamination of the silica. Finally, for embedded-polar-group (EPG) columns, the polar group can serve as a proton acceptor (column basicity III) for acids, phenols, and other donor solutes.


Subject(s)
Chromatography, Reverse-Phase/methods , Chromatography, Reverse-Phase/standards , Carboxylic Acids/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Metals/chemistry , Silicon Dioxide/chemistry
19.
Int J Obes (Lond) ; 39(5): 874-6, 2015 May.
Article in English | MEDLINE | ID: mdl-25319743

ABSTRACT

Subcutaneous adipose tissue can be obtained for research during an elective, clinically indicated operation by standard surgical excision approaches and by needle aspiration in pure research settings. Whether measurements of inflammatory markers and cells from tissues collected in these two different ways are comparable is debatable. We sought to determine whether these two techniques yield systematically different results for measurements of inflammation, cellular senescence and adipose tissue composition. Twelve subjects undergoing surgery participated. At the time of surgery abdominal subcutaneous adipose tissue from adjacent sites was removed by excision and needle aspiration. Stromovascular cell composition (flow cytometry), the number of senescent cells (senescence-associated-ß-galactosidase staining) and interleukin (IL)-6, IL-1, TNF-α and MCP1 mRNA (reverse transcription-PCR) were measured in each sample. We found no statistically significant differences between the two sample-collection approaches for any of the parameters measured. We conclude that these two methods of obtaining adipose tissue do not systematically differ in the results of cytokine mRNA content, cellular senescence or stromovascular cell composition.


Subject(s)
Adipose Tissue/chemistry , Adipose Tissue/surgery , Biopsy, Fine-Needle , Inflammation Mediators/analysis , Inflammation/metabolism , Adipose Tissue/pathology , Biomarkers/metabolism , Cellular Senescence , Chemokine CCL2/analysis , Female , Flow Cytometry , Gene Expression Regulation , Humans , Inflammation/pathology , Interleukin-1/analysis , Interleukin-6/analysis , Male , Middle Aged , RNA, Messenger/analysis , Tumor Necrosis Factor-alpha/analysis
20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-672150

ABSTRACT

The advent of superficially porous particles (SPPs) for packed HPLC columns has changed the way that many practitioners have approached the problem of developing needed separations. The very high efficiency of such columns, combined with convenient operating conditions, modest back pressures and the ability to use conventional HPLC instruments has resulted in intense basic studies of SPP technology, and widespread applications in many sciences. This report contains an overview of the SPP technology first developed in 2006 by Advanced Materials Technology, Inc., for sub-3-mm particles, then expanded into a family of SPP products with different particle sizes, pore sizes and other physical parameters. This approach was designed so that each particle of the family could be optimized for separating a particular group of compounds, usually based on solute size.

SELECTION OF CITATIONS
SEARCH DETAIL
...