Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 88(12): 6492-9, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27212615

ABSTRACT

Microiontophoresis uses an electric current to eject a drug solution from a glass capillary and is often utilized for targeted delivery in neurochemical investigations. The amount of drug ejected, and its effective concentration at the tip, has historically been difficult to determine, which has precluded its use in quantitative studies. To address this, a method called controlled iontophoresis was developed which employs a carbon-fiber microelectrode incorporated into a multibarreled iontophoretic probe to detect the ejection of electroactive species. Here, we evaluate the accuracy of this method. To do this, we eject different concentrations of quinpirole, a D2 receptor agonist, into a brain slice containing the dorsal striatum, a brain region with a high density of dopamine terminals. Local electrical stimulation was used to evoke dopamine release, and inhibitory actions of quinpirole on this release were examined. The amount of drug ejected was estimated by detection of a coejected electrochemical marker. Dose response curves generated in this manner were compared to curves generated by conventional perfusion of quinpirole through the slice. We find several experimental conditions must be optimized for accurate results. First, selection of a marker with an identical charge was necessary to mimic the ejection of the cationic agonist. Next, evoked responses were more precise following longer periods between the end of the ejection and stimulation. Lastly, the accuracy of concentration evaluations was improved by longer ejections. Incorporation of these factors into existing protocols allows for greater certainty of concentrations delivered by controlled iontophoresis.


Subject(s)
Dopamine Agonists/administration & dosage , Drug Delivery Systems/methods , Iontophoresis/methods , Quinpirole/administration & dosage , Receptors, Dopamine D2/agonists , Animals , Brain/metabolism , Corpus Striatum/metabolism , Dopamine Agonists/analysis , Dopamine Agonists/pharmacokinetics , Male , Quinpirole/analysis , Quinpirole/pharmacokinetics , Rats, Sprague-Dawley
2.
Anal Chem ; 86(19): 9909-16, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25157675

ABSTRACT

Iontophoresis uses a current to eject solution from the tip of a barrel formed from a pulled glass capillary and has been employed as a method of drug delivery for neurochemical investigations. Much attention has been devoted to resolving perhaps the greatest limitation of iontophoresis, the inability to determine the concentration of substances delivered by ejections. To further address this issue, we evaluate the properties of typical ejections such as barrel solution velocity and its relation to the ejection current using an amperometric and liquid chromatographic approach. These properties were used to predict the concentration distribution of ejected solute that was then confirmed by fluorescence microscopy. Additionally, incorporation of oppositely charged fluorophores into the barrel investigated the role of migration on the mass transport of an ejected species. Results indicate that location relative to the barrel tip is the primary influence on the distribution of ejected species. At short distances (<100 µm), advection from electroosmotic transport of the barrel solution may significantly contribute to the distribution, but this effect can be minimized through the use of low to moderate ejection currents. However, as the distance from the source increases (>100 µm), even solute ejected using high currents exhibits diffusion-limited behavior. Lastly a time-dependent theoretical model was constructed and is used with experimental fluorescent profiles to demonstrate how iontophoresis can generate near-uniform concentration distributions near the ejection source.


Subject(s)
Drug Delivery Systems/instrumentation , Flow Injection Analysis , Fluorescent Dyes/chemistry , Iontophoresis/standards , Diffusion , Electrochemical Techniques , Microscopy, Fluorescence , Static Electricity
3.
J Cereb Blood Flow Metab ; 34(7): 1128-37, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24714037

ABSTRACT

Neurovascular coupling is understood to be the underlying mechanism of functional hyperemia, but the actions of the neurotransmitters involved are not well characterized. Here we investigate the local role of the neurotransmitter norepinephrine in the ventral bed nucleus of the stria terminalis (vBNST) of the anesthetized rat by measuring O2, which is delivered during functional hyperemia. Extracellular changes in norepinephrine and O2 were simultaneously monitored using fast-scan cyclic voltammetry. Introduction of norepinephrine by electrical stimulation of the ventral noradrenergic bundle or by iontophoretic ejection induced an initial increase in O2 levels followed by a brief dip below baseline. Supporting the role of a hyperemic response, the O2 increases were absent in a brain slice containing the vBNST. Administration of selective pharmacological agents demonstrated that both phases of this response involve ß-adrenoceptor activation, where the delayed decrease in O2 is sensitive to both α- and ß-receptor subtypes. Selective lesioning of the locus coeruleus with the neurotoxin DSP-4 confirmed that these responses are caused by the noradrenergic cells originating in the nucleus of the solitary tract and A1 cell groups. Overall, these results support that non-coerulean norepinephrine release can mediate activity-induced O2 influx in a deep brain region.


Subject(s)
Hyperemia/metabolism , Neurons/metabolism , Norepinephrine/metabolism , Oxygen/blood , Septal Nuclei/metabolism , Animals , Electric Stimulation , Immunohistochemistry , Iontophoresis , Male , Medulla Oblongata/cytology , Medulla Oblongata/metabolism , Organ Culture Techniques , Rats , Rats, Sprague-Dawley
4.
Analyst ; 138(1): 129-36, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23120747

ABSTRACT

In Part I of a two-part series, we describe a simple and inexpensive approach to fabricate polystyrene devices that is based upon melting polystyrene (from either a Petri dish or powder form) against PDMS molds or around electrode materials. The ability to incorporate microchannels in polystyrene and integrate the resulting device with standard laboratory equipment such as an optical plate reader for analyte readout and pipets for fluid propulsion is first described. A simple approach for sample and reagent delivery to the device channels using a standard, multi-channel micropipette and a PDMS-based injection block is detailed. Integration of the microfluidic device with these off-chip functions (sample delivery and readout) enables high-throughput screens and analyses. An approach to fabricate polystyrene-based devices with embedded electrodes is also demonstrated, thereby enabling the integration of microchip electrophoresis with electrochemical detection through the use of a palladium electrode (for a decoupler) and carbon-fiber bundle (for detection). The device was sealed against a PDMS-based microchannel and used for the electrophoretic separation and amperometric detection of dopamine, epinephrine, catechol, and 3,4-dihydroxyphenylacetic acid. Finally, these devices were compared against PDMS-based microchips in terms of their optical transparency and absorption of an anti-platelet drug, clopidogrel. Part I of this series lays the foundation for Part II, where these devices were utilized for various on-chip cellular analysis.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Polystyrenes/chemistry , Dimethylpolysiloxanes/chemistry , Electrochemistry , Optical Devices
5.
Anal Chem ; 83(15): 5996-6003, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21718004

ABSTRACT

Segmented flow in microfluidic devices involves the use of droplets that are generated either on- or off-chip. When used with off-chip sampling methods, segmented flow has been shown to prevent analyte dispersion and improve temporal resolution by periodically surrounding an aqueous flow stream with an immiscible carrier phase as it is transferred to the microchip. To analyze the droplets by methods such as electrochemistry or electrophoresis, a method to "desegment" the flow into separate aqueous and immiscible carrier phase streams is needed. In this paper, a simple and straightforward approach for this desegmentation process was developed by first creating an air/water junction in natively hydrophobic and perpendicular PDMS channels. The air-filled channel was treated with a corona discharge electrode to create a hydrophilic/hydrophobic interface. When a segmented flow stream encounters this interface, only the aqueous sample phase enters the hydrophilic channel, where it can be subsequently analyzed by electrochemistry or microchip-based electrophoresis with electrochemical detection. It is shown that the desegmentation process does not significantly degrade the temporal resolution of the system, with rise times as low as 12 s reported after droplets are recombined into a continuous flow stream. This approach demonstrates significant advantages over previous studies in that the treatment process takes only a few minutes, fabrication is relatively simple, and reversible sealing of the microchip is possible. This work should enable future studies in which off-chip processes such as microdialysis can be integrated with segmented flow and electrochemical-based detection.


Subject(s)
Electrochemical Techniques/methods , Electrophoresis, Microchip/methods , Animals , Catecholamines/metabolism , Cell Line , Electrodes , Hydrophobic and Hydrophilic Interactions , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Rats
6.
Anal Methods ; 2(7): 811-816, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-21031142

ABSTRACT

This work demonstrates that recordable compact discs (CDs) that contain gold as a reflective layer can be used as an electrode substrate for microchip-based analysis systems. A fabrication procedure that enables the reproducible patterning of multiple electrodes has been developed. It is shown that the microelectrodes can be integrated within a PDMS-based fluidic network and used for amperometric detection of electroactive analytes at both single and dual microelectrodes. A detailed comparison is made between the CD-based patterned electrodes and electrodes made by the traditional method of sputtering gold and titanium adhesion layers onto a glass substrate. It is also shown that mercury can be electrodeposited onto a CD-based microelectrode and the amalgam electrode used to selectively detect thiols. Finally, it is demonstrated that a decoupler for microchip-based electrophoresis can be made by electrodepositing palladium onto a gold electrode and a separate downstream gold working electrode can be used for amperometric detection. These CD-based patterned electrodes are attractive alternatives for situations where device cost is of a concern or sputtering facilities are unavailable.

SELECTION OF CITATIONS
SEARCH DETAIL
...