Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 8(2): e14321, 2020 01.
Article in English | MEDLINE | ID: mdl-31961064

ABSTRACT

Autonomic dysregulation plays a key role in the development and progression of heart failure (HF). Vagal nerve stimulation (VNS) may be a promising therapeutic approach. However, the outcomes from clinical trials evaluating VNS in HF have been mixed, and the mechanisms underlying this treatment remain poorly understood. Intermittent high-frequency VNS (pulse width 300 µs, 30 Hz stimulation, 30 s on, and 300 s off) was used in healthy sheep and sheep in which established HF had been induced by 4 weeks rapid ventricular pacing to assess (a) the effects of VNS on intrinsic cardiac vagal tone, (b) whether VNS delays the progression of established HF, and (c) whether high-frequency VNS affects the regulation of cardiomyocyte calcium handling in health and disease. VNS had no effect on resting heart rate or intrinsic vagal tone in the healthy heart. Although fewer VNS-treated animals showed subjective signs of heart failure at 6 weeks, overall VNS did not slow the progression of clinical or echocardiographic signs of HF. Chronic VNS did not affect left ventricular cardiomyocyte calcium handling in healthy sheep. Rapid ventricular pacing decreased the L-type calcium current and calcium transient amplitude, but chronic VNS did not rescue dysfunctional calcium handling. Overall, high-frequency VNS did not prevent progression of established HF or influence cellular excitation-contraction coupling. However, a different model of HF or selection of different stimulation parameters may have yielded different results. These results highlight the need for greater insight into VNS dosing and parameter selection and a deeper understanding of its physiological effects.


Subject(s)
Excitation Contraction Coupling , Heart Failure/physiopathology , Tachycardia/physiopathology , Vagus Nerve Stimulation/methods , Animals , Calcium Signaling , Cells, Cultured , Female , Heart Failure/etiology , Heart Failure/therapy , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Sheep , Tachycardia/complications
2.
Sci Rep ; 9(1): 6801, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31043634

ABSTRACT

Heart failure (HF) is characterized by poor survival, a loss of catecholamine reserve and cellular structural remodeling in the form of disorganization and loss of the transverse tubule network. Indeed, survival rates for HF are worse than many common cancers and have not improved over time. Tadalafil is a clinically relevant drug that blocks phosphodiesterase 5 with high specificity and is used to treat erectile dysfunction. Using a sheep model of advanced HF, we show that tadalafil treatment improves contractile function, reverses transverse tubule loss, restores calcium transient amplitude and the heart's response to catecholamines. Accompanying these effects, tadalafil treatment normalized BNP mRNA and prevented development of subjective signs of HF. These effects were independent of changes in myocardial cGMP content and were associated with upregulation of both monomeric and dimerized forms of protein kinase G and of the cGMP hydrolyzing phosphodiesterases 2 and 3. We propose that the molecular switch for the loss of transverse tubules in HF and their restoration following tadalafil treatment involves the BAR domain protein Amphiphysin II (BIN1) and the restoration of catecholamine sensitivity is through reductions in G-protein receptor kinase 2, protein phosphatase 1 and protein phosphatase 2 A abundance following phosphodiesterase 5 inhibition.


Subject(s)
Catecholamines/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/chemistry , Heart Failure/drug therapy , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Phosphodiesterase 5 Inhibitors/pharmacology , Ventricular Remodeling/drug effects , Animals , Disease Models, Animal , Female , Heart Failure/metabolism , Heart Failure/pathology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Sheep , Tadalafil/pharmacology
3.
J Am Heart Assoc ; 7(23): e009972, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30520673

ABSTRACT

Background Atrial fibrillation ( AF ) is common in the elderly, but rare in the young; however, the changes that occur with age that promote AF are not fully understood. Action potential ( AP ) alternans may be involved in the initiation of AF . Using a translationally relevant model, we investigated whether age-associated atrial vulnerability to AF was associated with susceptibility to AP alternans. Methods and Results AF was induced in conscious young and old sheep using 50 Hz burst pacing. Old sheep were more vulnerable to AF . Monophasic and cellular AP s were recorded from the right atrium in vivo and from myocytes isolated from the left and right atrial appendages. AP alternans occurred at lower stimulation frequencies in old sheep than young in vivo (old, 3.0±0.1 Hz; young, 3.3±0.1 Hz; P<0.05) and in isolated myocytes (old, 1.6±0.1 Hz; young, 2.0±0.1 Hz; P<0.05). Simultaneous recordings of [Ca2+]i and membrane potential in myocytes showed that alternans of AP s and [Ca2+]i often occurred together. However, at low stimulation rates [Ca2+]i alternans could occur without AP alternans, whereas at high stimulation rates AP alternans could still be observed despite disabling Ca2+ cycling using thapsigargin. Conclusions We have shown, for the first time in a large mammalian model, that aging is associated with increased duration of AF and susceptibility to AP alternans. We suggest that instabilities in Ca2+ handling initiate alternans at low stimulation rates, but that AP restitution alone can sustain alternans at higher rates.


Subject(s)
Action Potentials/physiology , Atrial Fibrillation/etiology , Age Factors , Animals , Atrial Fibrillation/physiopathology , Atrial Function/physiology , Calcium/physiology , Disease Susceptibility/etiology , Female , Heart Atria/physiopathology , Membrane Potentials/physiology , Muscle Cells/physiology , Sheep
4.
Catheter Cardiovasc Interv ; 89(3): 484-492, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27651124

ABSTRACT

OBJECTIVES: This study aimed at assessing the feasibility and long-term efficacy of left atrial appendage occlusion (LAAO) in a "real world" setting. BACKGROUND: Although LAAO has recently emerged as an alternative to oral anticoagulants in patients with atrial fibrillation for the prevention of thromboembolic stroke, "real world" data about the procedure with different devices are lacking. METHODS: Eight centers in the United Kingdom contributed to a retrospective registry for LAAO procedures undertaken between July 2009 and November 2014. RESULTS: A total of 371 patients (72.9 ± 8.3 years old, 88.9% males) were enrolled. The overall procedure success was 92.5%, with major events in 3.5% of cases. The device choice was Watchman in 63% of cases, Amplatzer Cardiac Plug in 34.7%, Lariat in 1.7%, and Coherex WaveCrest in 0.6%. A significant improvement in procedure success (from 89.2% to 95.7%; P = 0.018) and reduction of acute major complications (from 6.5% to 0.5%; P = 0.001) were observed between procedures in the first and the second half of the recruitment time. An annual 90.1% relative risk reduction (RRR) for ischemic stroke, an 87.2% thromboembolic events RRR, and a 92.9% major bleeding RRR were observed, if compared with the predicted annual risks based on CHADS2, CHA2DS2-Vasc, and HAS-BLED scores, respectively, over a follow-up period of 24.7 ± 16.07 months. CONCLUSIONS: LAAO can be performed safely in a real world setting with good implant success rates and procedural outcomes. The long-term benefits of the procedure are reassuring in terms of both ischemic events and avoidance of severe bleeding associated with anticoagulation in this patient group. © 2016 Wiley Periodicals, Inc.


Subject(s)
Atrial Appendage , Atrial Fibrillation/therapy , Cardiac Catheterization , Intracranial Embolism/prevention & control , Stroke/prevention & control , Aged , Aged, 80 and over , Atrial Appendage/diagnostic imaging , Atrial Appendage/physiopathology , Atrial Fibrillation/complications , Atrial Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Cardiac Catheterization/adverse effects , Cardiac Catheterization/instrumentation , Cardiac Catheterization/methods , Feasibility Studies , Female , Humans , Intracranial Embolism/etiology , Male , Middle Aged , Registries , Retrospective Studies , Risk Factors , Stroke/etiology , Time Factors , Treatment Outcome , United States
5.
J Gerontol A Biol Sci Med Sci ; 71(12): 1544-1552, 2016 12.
Article in English | MEDLINE | ID: mdl-26707382

ABSTRACT

Heart failure (HF) is predominantly a disease of older adults and characterized by extensive sympatho-vagal imbalance leading to impaired reflex control of heart rate (HR). However, whether aging influences the development or extent of the autonomic imbalance in HF remains unclear. To address this, we used an ovine model of aging with tachypacing-induced HF to determine whether aging affects the chronotropic and inotropic responses to autonomic stimulation and reduction in heart rate variability (HRV) in HF. We find that aging is associated with increased cardiac dimensions and reduced contractility before the onset of tachypacing, and these differences persist in HF. Additionally, the chronotropic response to ß-adrenergic stimulation was markedly attenuated in HF, and this occurred more rapidly in aged animals. By measuring HR during sequential autonomic blockade, our data are consistent with a reduced parasympathetic control of resting HR in aging, with young HF animals having an attenuated sympathetic influence on HR. Time-domain analyses of HR show a reduction in HRV in both young and aged failing animals, although HRV is lowest in aged HF. In conclusion, aging is associated with altered autonomic control and ß-adrenergic responsiveness of HR, and these are exacerbated with the development of HF.


Subject(s)
Autonomic Nervous System/physiopathology , Heart Failure/physiopathology , Acetylcholine/pharmacology , Adrenergic beta-Antagonists/pharmacology , Age Factors , Animals , Biomarkers/blood , Cardiac Pacing, Artificial , Disease Models, Animal , Dobutamine/pharmacology , Echocardiography , Electrocardiography , Enzyme-Linked Immunosorbent Assay , Female , Heart Rate/drug effects , Heart Rate/physiology , Hemodynamics , Norepinephrine/blood , Sheep, Domestic , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...