Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 12(1): 19651, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36385330

ABSTRACT

Fuel components such as benzene, toluene, and methyl tertiary-butyl ether (MTBE) are frequently detected pollutants in groundwater resources. Ex-situ remediation technologies by activated carbon have been used for treatment for many years. However, due to high cost of these technology, more attention has been given to the in-situ remediation methods of contaminated groundwaters using liquid carbon adsorbents. Literature search showed limited studies on using adsorbents in liquid form for the removal of such contaminants. Therefore, this lab-scale study investigates the capacity of using raw biochar-based liquid activated carbon and iron-modified biochar-based liquid activated carbon to remove these pollutants. The adsorption efficiency of the synthesized liquid activated carbon and iron-modified liquid activated carbon mixed with sand, limestone, and 1:1 mixture of sand/limestone, was tested using batch suspension experiments. Adsorption by granular activated carbon was also investigated for comparison with liquid activated carbon. Results of the study revealed that mixing of liquid activated carbon or LAC-Fe on subsurface materials had not improved the removal efficiency of MTBE. At the same time, it showed a slight improvement in the adsorption efficiency of benzene and toluene. In all cases, the removal by GAC was higher with around 80% and 90% for MTBE and BT, respectively. Results also showed that benzene and toluene were better removed by liquid activated carbon and iron-modified liquid activated carbon (∼ 40%) than MTBE (∼ 20%). It is also found that water chemistry (i.e., salinity and pH) had insignificant effects on the removal efficiency of pollutants under the study conditions. It can be concluded that more research is needed to improve the capacity of biochar-based liquid-activated carbon in removing MTBE, benzene and toluene compounds that will lead to improve the utilization of liquid activated carbon for the in-situ remediation of contaminated groundwaters.


Subject(s)
Charcoal , Environmental Pollutants , Benzene , Toluene , Sand , Iron/chemistry , Calcium Carbonate
2.
Chemosphere ; 284: 131390, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34225127

ABSTRACT

In a column set-up, Fe modified biochar produced from date palm leaves was used to remove As (1 mg L-1) from a laboratory-prepared wastewater. The wastewater treatment process was monitored in real-time by spectral induced polarization (SIP), over a wide range of frequencies (0.01-1000 Hz). Both 5 and 10% biochar-amended columns achieved As removal exceeding 98%. The SIP parameters appear to be sensitive on As removal processes, with the recorded trend following the conventional geochemical monitoring, while offering higher temporal resolution.


Subject(s)
Arsenic , Environmental Restoration and Remediation , Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , Materials Science , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 669: 389-399, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30884263

ABSTRACT

The simulation-optimisation models of groundwater and contaminant transport can be a powerful tool in the management of groundwater resources and remediation design. In this study, using Multiquadratic Radial Basis Function (MRBF) a coupled groundwater flow and reactive transport of contaminant and oxidant was developed in the framework of the Meshfree method. The parameter analysis has determined the optimum shape parameter (0.97), and the results of the model were compared with a physical sandbox model which were in good agreement. The genetic algorithm approach was used to find the optimum design of the remediation using permanganate as an oxidant. To find the optimum design we considered two objectives and two constraints. The results revealed that the breakthrough of contaminant to the downstream area of interest and the concentration of the contaminant in this area is reduced significantly with optimisation.

4.
J Environ Manage ; 146: 9-15, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25151110

ABSTRACT

CONTEXT: Leachate is the liquid formed when waste breaks down in the landfill and water filters through that waste. This liquid is highly toxic and can pollute the land, ground water and water ways. It is mandatory for landfills to protect against leachate in most countries worldwide. Controlling the pollutant loading, means reducing its quantity by containing or treating the waste to comply with certain discharge characteristics which are compatible with the receptor medium. OBJECTIVE: This paper describes the reduction of the organic load of a mature landfill leachate using a novel experimental set-up that employs hydrogen peroxide under subcritical conditions and aims to establish this method as an effective alternative to currently used options. Response surface methodology was applied to optimize the treatment process and determine which of the following there parameters - temperature, residence time and hydrogen peroxide concentration - played the most important role. METHOD: The method employed is based on the use of laboratory-scale, stainless steel reactors, filled with the leachate and appropriate quantities of hydrogen peroxide. Under subcritical conditions (temperature in the range of 100-374 °C and enough pressure to maintain the liquid state of water), hydrogen peroxide produces hydroxyl radicals which are highly reactive and oxidize the organic molecules of the leachate. RESULTS: The highest COD decrease of 85% was experimentally observed at 300 °C, 500 mM H2O2 and 180 min residence time. It was determined that the combination of oxidant concentration and temperature is the rate-determining factor, whereas residence time has a lesser effect on the process. CONCLUSIONS: A simple, quick, effective and environmentally-friendly method for the treatment of the organic load of landfill leachate was developed and optimized at laboratory scale.


Subject(s)
Water Pollutants, Chemical/chemistry , Water Pollution/prevention & control , Water Purification/methods , Humans , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL