Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
CPT Pharmacometrics Syst Pharmacol ; 5(5): 235-49, 2016 05.
Article in English | MEDLINE | ID: mdl-27299936

ABSTRACT

Quantitative and systems pharmacology (QSP) is increasingly being applied in pharmaceutical research and development. One factor critical to the ultimate success of QSP is the establishment of commonly accepted language, technical criteria, and workflows. We propose an integrated workflow that bridges conceptual objectives with underlying technical detail to support the execution, communication, and evaluation of QSP projects.


Subject(s)
Computational Biology/methods , Database Management Systems , Pharmacology, Clinical/methods , Systems Biology/methods , Workflow , Humans
2.
CPT Pharmacometrics Syst Pharmacol ; 4(3): e00019, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26225238

ABSTRACT

Human cancers are incredibly diverse with regard to molecular aberrations, dependence on oncogenic signaling pathways, and responses to pharmacological intervention. We wished to assess how cellular dependence on the canonical PI3K vs. MAPK pathways within HER2+ cancers affects responses to combinations of targeted therapies, and biomarkers predictive of their activity. Through an integrative analysis of mechanistic model simulations and in vitro cell line profiling, we designed a six-arm decision tree to stratify treatment of HER2+ cancers using combinations of targeted agents. Activating mutations in the PI3K and MAPK pathways (PIK3CA and KRAS), and expression of the HER3 ligand heregulin determined sensitivity to combinations of inhibitors against HER2 (lapatinib), HER3 (MM-111), AKT (MK-2206), and MEK (GSK-1120212; trametinib), in addition to the standard of care trastuzumab (Herceptin). The strategy used to identify effective combinations and predictive biomarkers in HER2-expressing tumors may be more broadly extendable to other human cancers.

3.
Article in English | MEDLINE | ID: mdl-24005988

ABSTRACT

If mathematical modeling is to be used effectively in cancer drug development, future models must take into account both the mechanistic details of cellular signal transduction networks and the pharmacokinetics (PK) of drugs used to inhibit their oncogenic activity. In this perspective, we present an approach to building multiscale models that capture systems-level architectural features of oncogenic signaling networks, and describe how these models can be used to design combination therapies and identify predictive biomarkers in silico.CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e71; doi:10.1038/psp.2013.38; published online 4 September 2013.

SELECTION OF CITATIONS
SEARCH DETAIL
...