Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Neuroimage Clin ; 37: 103325, 2023.
Article in English | MEDLINE | ID: mdl-36724732

ABSTRACT

PURPOSE: Proton magnetic resonance spectroscopy (1H MRS) offers biomarkers of metabolic damage after mild traumatic brain injury (mTBI), but a lack of replicability studies hampers clinical translation. In a conceptual replication study design, the results reported in four previous publications were used as the hypotheses (H1-H7), specifically: abnormalities in patients are diffuse (H1), confined to white matter (WM) (H2), comprise low N-acetyl-aspartate (NAA) levels and normal choline (Cho), creatine (Cr) and myo-inositol (mI) (H3), and correlate with clinical outcome (H4); additionally, a lack of findings in regional subcortical WM (H5) and deep gray matter (GM) structures (H6), except for higher mI in patients' putamen (H7). METHODS: 26 mTBI patients (20 female, age 36.5 ± 12.5 [mean ± standard deviation] years), within two months from injury and 21 age-, sex-, and education-matched healthy controls were scanned at 3 Tesla with 3D echo-planar spectroscopic imaging. To test H1-H3, global analysis using linear regression was used to obtain metabolite levels of GM and WM in each brain lobe. For H4, patients were stratified into non-recovered and recovered subgroups using the Glasgow Outcome Scale Extended. To test H5-H7, regional analysis using spectral averaging estimated metabolite levels in four GM and six WM structures segmented from T1-weighted MRI. The Mann-Whitney U test and weighted least squares analysis of covariance were used to examine mean group differences in metabolite levels between all patients and all controls (H1-H3, H5-H7), and between recovered and non-recovered patients and their respectively matched controls (H4). Replicability was defined as the support or failure to support the null hypotheses in accordance with the content of H1-H7, and was further evaluated using percent differences, coefficients of variation, and effect size (Cohen's d). RESULTS: Patients' occipital lobe WM Cho and Cr levels were 6.0% and 4.6% higher than controls', respectively (Cho, d = 0.37, p = 0.04; Cr, d = 0.63, p = 0.03). The same findings, i.e., higher patients' occipital lobe WM Cho and Cr (both p = 0.01), but with larger percent differences (Cho, 8.6%; Cr, 6.3%) and effect sizes (Cho, d = 0.52; Cr, d = 0.88) were found in the comparison of non-recovered patients to their matched controls. For the lobar WM Cho and Cr comparisons without statistical significance (frontal, parietal, temporal), unidirectional effect sizes were observed (Cho, d = 0.07 - 0.37; Cr, d = 0.27 - 0.63). No differences were found in any metabolite in any lobe in the comparison between recovered patients and their matched controls. In the regional analyses, no differences in metabolite levels were found in any GM or WM region, but all WM regions (posterior, frontal, corona radiata, and the genu, body, and splenium of the corpus callosum) exhibited unidirectional effect sizes for Cho and Cr (Cho, d = 0.03 - 0.34; Cr, d = 0.16 - 0.51). CONCLUSIONS: We replicated findings of diffuse WM injury, which correlated with clinical outcome (supporting H1-H2, H4). These findings, however, were among the glial markers Cho and Cr, not the neuronal marker NAA (not supporting H3). No differences were found in regional GM and WM metabolite levels (supporting H5-H6), nor in putaminal mI (not supporting H7). Unidirectional effect sizes of higher patients' Cho and Cr within all WM analyses suggest widespread injury, and are in line with the conclusion from the previous publications, i.e., that detection of WM injury may be more dependent upon sensitivity of the 1H MRS technique than on the selection of specific regions. The findings lend further support to the corollary that clinic-ready 1H MRS biomarkers for mTBI may best be achieved by using high signal-to-noise-ratio single-voxels placed anywhere within WM. The biochemical signature of the injury, however, may differ and therefore absolute levels, rather than ratios may be preferred. Future replication efforts should further test the generalizability of these findings.


Subject(s)
Brain Concussion , Brain Injuries , Humans , Female , Young Adult , Adult , Middle Aged , Proton Magnetic Resonance Spectroscopy , Brain Concussion/pathology , Magnetic Resonance Spectroscopy/methods , Protons , Brain Injuries/pathology , Brain/pathology , Aspartic Acid , Creatine/metabolism , Choline/metabolism
2.
Eur Radiol ; 32(2): 1308-1319, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34410458

ABSTRACT

OBJECTIVES: To assess whether MR fingerprinting (MRF)-based relaxation properties exhibit cross-sectional and prospective correlations with patient outcome and compare the results with those from DTI. METHODS: Clinical imaging, MRF, and DTI were acquired in patients (24 ± 10 days after injury (timepoint 1) and 90 ± 17 days after injury (timepoint 2)) and once in controls. Patient outcome was assessed with global functioning, symptom profile, and neuropsychological testing. ADC and fractional anisotropy (FA) from DTI and T1 and T2 from MRF were compared in 12 gray and white matter regions with Mann-Whitney tests. Bivariate associations between MR measures and outcome were assessed using the Spearman correlation and logistic regression. RESULTS: Data from 22 patients (38 ± 12 years; 17 women) and 18 controls (32 ± 8 years; 12 women) were analyzed. Fourteen patients (37 ± 12 years; 11 women) returned for timepoint 2, while two patients provided only timepoint 2 clinical outcome data. At timepoint 1, there were no differences between patients and controls in T1, T2, and ADC, while FA was lower in mTBI frontal white matter. T1 at timepoint 1 and the change in T1 exhibited more (n = 18) moderate to strong correlations (|r|= 0.6-0.85) with clinical outcome at timepoint 2 than T2 (n = 3), FA (n = 7), and ADC (n = 2). High T1 at timepoint 1, and serially increasing T1, accounted for five of the six MR measures with the highest utility for identification of non-recovered patients at timepoint 2 (AUC > 0.80). CONCLUSION: T1 derived from MRF was found to have higher utility than T2, FA, and ADC for predicting 3-month outcome after mTBI. KEY POINTS: • In a region-of-interest approach, FA, ADC, and T1 and T2 all showed limited utility in differentiating patients from controls at an average of 24 and 90 days post-mild traumatic brain injury. • T1 at 24 days, and the serial change in T1, revealed more and stronger predictive correlations with clinical outcome at 90 days than did T2, ADC, or FA. • T1 showed better prospective identification of non-recovered patients at 90 days than ADC, T2, and FA.


Subject(s)
Brain Concussion , Brain , Brain Concussion/diagnostic imaging , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Prospective Studies
3.
Front Neurol ; 13: 1045678, 2022.
Article in English | MEDLINE | ID: mdl-36686533

ABSTRACT

Magnetic resonance spectroscopy is a powerful, non-invasive, quantitative imaging technique that allows for the measurement of brain metabolites that has demonstrated utility in diagnosing and characterizing a broad range of neurological diseases. Its impact, however, has been limited due to small sample sizes and methodological variability in addition to intrinsic limitations of the method itself such as its sensitivity to motion. The lack of standardization from a data acquisition and data processing perspective makes it difficult to pool multiple studies and/or conduct multisite studies that are necessary for supporting clinically relevant findings. Based on the experience of the ENIGMA MRS work group and a review of the literature, this manuscript provides an overview of the current state of MRS data harmonization. Key factors that need to be taken into consideration when conducting both retrospective and prospective studies are described. These include (1) MRS acquisition issues such as pulse sequence, RF and B0 calibrations, echo time, and SNR; (2) data processing issues such as pre-processing steps, modeling, and quantitation; and (3) biological factors such as voxel location, age, sex, and pathology. Various approaches to MRS data harmonization are then described including meta-analysis, mega-analysis, linear modeling, ComBat and artificial intelligence approaches. The goal is to provide both novice and experienced readers with the necessary knowledge for conducting MRS data harmonization studies.

4.
NMR Biomed ; 34(8): e4538, 2021 08.
Article in English | MEDLINE | ID: mdl-33956374

ABSTRACT

The hippocampus is one of the most challenging brain regions for proton MR spectroscopy (MRS) applications. Moreover, quantification of J-coupled species such as myo-inositol (m-Ins) and glutamate + glutamine (Glx) is affected by the presence of macromolecular background. While long echo time (TE) MRS eliminates the macromolecules, it also decreases the m-Ins and Glx signal and, as a result, these metabolites are studied mainly with short TE. Here, we investigate the feasibility of reproducibly measuring their concentrations at a long TE of 120 ms, using a semi-adiabatic localization by adiabatic selective refocusing (sLASER) sequence, as this sequence was recently recommended as a standard for clinical MRS. Gradient offset-independent adiabatic refocusing pulses were implemented, and an optimal long TE for the detection of m-Ins and Glx was determined using the T2 relaxation times of macromolecules. Metabolite concentrations and their coefficients of variation (CVs) were obtained for a 3.4-mL voxel centered on the left hippocampus on 3-T MR systems at two different sites with three healthy subjects (aged 32.5 ± 10.2 years [mean ± standard deviation]) per site, with each subject scanned over two sessions, and with each session comprising three scans. Concentrations of m-Ins, choline, creatine, Glx and N-acetyl-aspartate were 5.4 ± 1.5, 1.7 ± 0.2, 5.8 ± 0.3, 11.6 ± 1.2 and 5.9 ± 0.4 mM (mean ± standard deviation), respectively. Their respective mean within-session CVs were 14.5% ± 5.9%, 6.5% ± 5.3%, 6.0% ± 3.4%, 10.6% ± 6.2% and 3.5% ± 1.4%, and their mean within-subject CVs were 17.8% ± 18.2%, 7.5% ± 6.3%, 7.4% ± 6.4%, 12.4% ± 5.3% and 4.8% ± 3.0%. The between-subject CVs were 25.0%, 12.3%, 5.3%, 10.7% and 6.4%, respectively. Hippocampal long-TE sLASER single voxel spectroscopy can provide macromolecule-independent assessment of all major metabolites including Glx and m-Ins.


Subject(s)
Algorithms , Hippocampus/diagnostic imaging , Magnetic Resonance Spectroscopy , Adult , Computer Simulation , Female , Humans , Male , Metabolome , Time Factors
6.
Brain Commun ; 3(2): fcab051, 2021.
Article in English | MEDLINE | ID: mdl-33928248

ABSTRACT

The pathological cascade of tissue damage in mild traumatic brain injury is set forth by a perturbation in ionic homeostasis. However, whether this class of injury can be detected in vivo and serve as a surrogate marker of clinical outcome is unknown. We employ sodium MRI to test the hypotheses that regional and global total sodium concentrations: (i) are higher in patients than in controls and (ii) correlate with clinical presentation and neuropsychological function. Given the novelty of sodium imaging in traumatic brain injury, effect sizes from (i), and correlation types and strength from (ii), were compared to those obtained using standard diffusion imaging metrics. Twenty-seven patients (20 female, age 35.9 ± 12.2 years) within 2 months after injury and 19 controls were scanned with proton and sodium MRI at 3 Tesla. Total sodium concentration, fractional anisotropy and apparent diffusion coefficient were obtained with voxel averaging across 12 grey and white matter regions. Linear regression was used to obtain global grey and white matter total sodium concentrations. Patient outcome was assessed with global functioning, symptom profiles and neuropsychological function assessments. In the regional analysis, there were no statistically significant differences between patients and controls in apparent diffusion coefficient, while differences in sodium concentration and fractional anisotropy were found only in single regions. However, for each of the 12 regions, sodium concentration effect sizes were uni-directional, due to lower mean sodium concentration in patients compared to controls. Consequently, linear regression analysis found statistically significant lower global grey and white matter sodium concentrations in patients compared to controls. The strongest correlation with outcome was between global grey matter sodium concentration and the composite z-score from the neuropsychological testing. In conclusion, both sodium concentration and diffusion showed poor utility in differentiating patients from controls, and weak correlations with clinical presentation, when using a region-based approach. In contrast, sodium linear regression, capitalizing on partial volume correction and high sensitivity to global changes, revealed high effect sizes and associations with patient outcome. This suggests that well-recognized sodium imbalances in traumatic brain injury are (i) detectable non-invasively; (ii) non-focal; (iii) occur even when the antecedent injury is clinically mild. Finally, in contrast to our principle hypothesis, patients' sodium concentrations were lower than controls, indicating that the biological effect of traumatic brain injury on the sodium homeostasis may differ from that in other neurological disorders. Note: This figure has been annotated.

7.
Neurobiol Aging ; 98: 42-51, 2021 02.
Article in English | MEDLINE | ID: mdl-33232854

ABSTRACT

We characterize the whole-brain N-acetyl-aspartate (WBNAA) and brain tissue fractions across the adult lifespan and test the hypothesis that, despite age-related atrophy, neuronal integrity (reflected by WBNAA) is preserved in normal aging. Two-hundred-and-seven participants: 133 cognitively intact older adults (73.6 ± 7.4 mean ± standard deviation, range: 60-90 year old) and 84 young (37.9 ± 11, range: 21-59 year old) were scanned with proton magnetic resonance spectroscopy and T1-weighted MRI. Their WBNAA, fractional brain parenchyma, and gray and white matter volumes (fBPV, fGM, and fWM) were compared and modeled as functions of age and sex. Compared with young, older-adults' WBNAA was lower by ~35%, and fBPV, fGM and fWM were lower by ~10%. Linear regressions found 0.5%/year WBNAA and 0.2%/year fBPV and fGM declines, whereas fWM rose to age ~40 years, and declined thereafter. fBPV and fGM were 1.8% and 4% higher in women, with no sex decline rates difference. We conclude that contrary to our hypothesis, atrophy was accompanied by WBNAA decline. Across the entire age range, women's brains showed less atrophy than men's. Formulas to estimate WBNAA and brain tissue fractions in healthy adults are provided to help differentiate normal from abnormal aging.


Subject(s)
Brain/metabolism , Brain/pathology , Healthy Aging/metabolism , Healthy Aging/pathology , Aged , Aged, 80 and over , Aspartic Acid/analogs & derivatives , Atrophy , Female , Gray Matter/metabolism , Gray Matter/pathology , Humans , Male , Middle Aged , Organ Size , Sex Characteristics
8.
Pediatr Blood Cancer ; 68(1): e28795, 2021 01.
Article in English | MEDLINE | ID: mdl-33155419

ABSTRACT

Etoposide administration can be complicated by hypersensitivity reactions. Desensitization may provide a strategy to prevent hypersensitivity recurrence. One challenge with desensitization is regimen complexity. This case series describes 12 pediatric, adolescent, and young adult patients who received a simplified six-step etoposide desensitization protocol. This protocol contains 50% fewer titration steps compared with previously described protocols and eliminates infusion rate changes during titration. Simplified titration may minimize risk of error during administration and improve safety. This protocol was tolerated by 92% of patients. Given increasing frequency and duration of drug shortages, a simplified desensitization protocol provides a valuable treatment option.


Subject(s)
Antineoplastic Agents, Phytogenic/adverse effects , Desensitization, Immunologic/methods , Drug Hypersensitivity/prevention & control , Etoposide/adverse effects , Neoplasms/drug therapy , Adolescent , Adult , Antineoplastic Agents, Phytogenic/immunology , Child , Child, Preschool , Drug Hypersensitivity/etiology , Etoposide/immunology , Female , Follow-Up Studies , Humans , Infant , Male , Neoplasms/immunology , Neoplasms/pathology , Prognosis , Retrospective Studies , Young Adult
9.
Brain Imaging Behav ; 15(2): 504-525, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32797399

ABSTRACT

Proton (1H) magnetic resonance spectroscopy provides a non-invasive and quantitative measure of brain metabolites. Traumatic brain injury impacts cerebral metabolism and a number of research groups have successfully used this technique as a biomarker of injury and/or outcome in both pediatric and adult TBI populations. However, this technique is underutilized, with studies being performed primarily at centers with access to MR research support. In this paper we present a technical introduction to the acquisition and analysis of in vivo 1H magnetic resonance spectroscopy and review 1H magnetic resonance spectroscopy findings in different injury populations. In addition, we propose a basic 1H magnetic resonance spectroscopy data acquisition scheme (Supplemental Information) that can be added to any imaging protocol, regardless of clinical magnetic resonance platform. We outline a number of considerations for study design as a way of encouraging the use of 1H magnetic resonance spectroscopy in the study of traumatic brain injury, as well as recommendations to improve data harmonization across groups already using this technique.


Subject(s)
Brain Injuries, Traumatic , Magnetic Resonance Imaging , Adult , Brain/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging , Child , Humans , Magnetic Resonance Spectroscopy , Proton Magnetic Resonance Spectroscopy
10.
Magn Reson Med ; 83(1): 22-44, 2020 01.
Article in English | MEDLINE | ID: mdl-31393032

ABSTRACT

PURPOSE: Unlike conventional MR spectroscopy (MRS), which only measures metabolite concentrations, multiparametric MRS also quantifies their longitudinal (T1 ) and transverse (T2 ) relaxation times, as well as the radiofrequency transmitter inhomogeneity (B1+ ). To test whether knowledge of these additional parameters can improve the clinical utility of brain MRS, we compare the conventional and multiparametric approaches in terms of expected classification accuracy in differentiating controls from patients with neurological disorders. THEORY AND METHODS: A literature review was conducted to compile metabolic concentrations and relaxation times in a wide range of neuropathologies and regions of interest. Simulations were performed to construct receiver operating characteristic curves and compute the associated areas (area under the curve) to examine the sensitivity and specificity of MRS for detecting each pathology in each region. Classification accuracy was assessed using metabolite concentrations corrected using population-averages for T1 , T2 , and B1+ (conventional MRS); using metabolite concentrations corrected using per-subject values (multiparametric MRS); and using an optimal linear multiparametric estimator comprised of the metabolites' concentrations and relaxation constants (multiparametric MRS). Additional simulations were conducted to find the minimal intra-subject precision needed for each parameter. RESULTS: Compared with conventional MRS, multiparametric approaches yielded area under the curve improvements for almost all neuropathologies and regions of interest. The median area under the curve increased by 0.14 over the entire dataset, and by 0.24 over the 10 instances with the largest individual increases. CONCLUSIONS: Multiparametric MRS can substantially improve the clinical utility of MRS in diagnosing and assessing brain pathology, motivating the design and use of novel multiparametric sequences.


Subject(s)
Magnetic Resonance Spectroscopy , Signal Processing, Computer-Assisted , Algorithms , Area Under Curve , Aspartic Acid/analogs & derivatives , Aspartic Acid/pharmacology , Biomarkers/metabolism , Computer Simulation , Diagnosis, Computer-Assisted/methods , Humans , Linear Models , Monte Carlo Method , Nervous System Diseases/diagnosis , Neurons/metabolism , Radio Waves , Reproducibility of Results
11.
JAMA Netw Open ; 2(10): e1913968, 2019 10 02.
Article in English | MEDLINE | ID: mdl-31651965

ABSTRACT

Importance: Pediatric cancers are epigenetic diseases; therefore, considering tumor gene expression information is necessary for a complete understanding of the tumorigenic processes. Objective: To evaluate the feasibility and utility of incorporating comparative gene expression information into the precision medicine framework for difficult-to-treat pediatric and young adult patients with cancer. Design, Setting, and Participants: This cohort study was conducted as a consortium between the University of California, Santa Cruz (UCSC) Treehouse Childhood Cancer Initiative and clinical genomic trials. RNA sequencing (RNA-Seq) data were obtained from the following 4 clinical sites and analyzed at UCSC: British Columbia Children's Hospital (n = 31), Lucile Packard Children's Hospital at Stanford University (n = 80), CHOC Children's Hospital and Hyundai Cancer Institute (n = 46), and the Pacific Pediatric Neuro-Oncology Consortium (n = 24). The study dates were January 1, 2016, to March 22, 2017. Exposures: Participants underwent tumor RNA-Seq profiling as part of 4 separate clinical trials at partner hospitals. The UCSC either downloaded RNA-Seq data from a partner institution for analysis in the cloud or provided a Docker pipeline that performed the same analysis at a partner institution. The UCSC then compared each participant's tumor RNA-Seq profile with more than 11 000 uniformly analyzed tumor profiles from pediatric and young adult patients with cancer, downloaded from public data repositories. These comparisons were used to identify genes and pathways that are significantly overexpressed in each patient's tumor. Results of the UCSC analysis were presented to clinical partners. Main Outcomes and Measures: Feasibility of a third-party institution (UCSC Treehouse Childhood Cancer Initiative) to obtain tumor RNA-Seq data from patients, conduct comparative analysis, and present analysis results to clinicians; and proportion of patients for whom comparative tumor gene expression analysis provided useful clinical and biological information. Results: Among 144 samples from children and young adults (median age at diagnosis, 9 years; range, 0-26 years; 72 of 118 [61.0%] male [26 patients sex unknown]) with a relapsed, refractory, or rare cancer treated on precision medicine protocols, RNA-Seq-derived gene expression was potentially useful for 99 of 144 samples (68.8%) compared with DNA mutation information that was potentially useful for only 34 of 74 samples (45.9%). Conclusions and Relevance: This study's findings suggest that tumor RNA-Seq comparisons may be feasible and highlight the potential clinical utility of incorporating such comparisons into the clinical genomic interpretation framework for difficult-to-treat pediatric and young adult patients with cancer. The study also highlights for the first time to date the potential clinical utility of harmonized publicly available genomic data sets.


Subject(s)
Neoplasms/genetics , RNA, Neoplasm/analysis , Sequence Analysis, RNA , Canada , Child , Child, Preschool , Female , Gene Expression , Humans , Infant , Infant, Newborn , Male , Precision Medicine , United States , Young Adult
12.
J Clin Immunol ; 39(6): 592-595, 2019 08.
Article in English | MEDLINE | ID: mdl-31267431

ABSTRACT

Mutations in Dedicator of cytokinesis 8 (DOCK8) are a rare cause of combined immunodeficiency associated with atopy, infectious susceptibility, and risk for malignancy. We describe a 22-year-old male with a diagnosis of B cell lymphoblastic leukemia followed by Epstein-Barr virus (EBV)-associated diffuse large B cell lymphoma (DLBCL) with compound heterozygous mutations in DOCK8 and normal intracellular DOCK8 protein expression. Here, B cell lymphoblastic leukemia followed by EBV-associated DLBCL led to the discovery of DOCK8 deficiency. For instances of high clinical suspicion despite normal DOCK8 protein expression, additional functional testing is critical to make a diagnosis. Understanding the spectrum of DOCK8 mutants and their phenotypes will improve our understanding of DOCK8 deficiency.


Subject(s)
Epstein-Barr Virus Infections/complications , Guanine Nucleotide Exchange Factors/genetics , Herpesvirus 4, Human , Lymphoma, Large B-Cell, Diffuse/etiology , Mutation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Alleles , Epstein-Barr Virus Infections/virology , Genotype , Humans , Male , Young Adult
13.
J Magn Reson Imaging ; 50(5): 1424-1432, 2019 11.
Article in English | MEDLINE | ID: mdl-30868703

ABSTRACT

BACKGROUND: 3D brain proton MR spectroscopic imaging (1 H MRSI) facilitates simultaneous metabolic profiling of multiple loci, at higher, sub-1 cm3 , spatial resolution than single-voxel 1 H MRS with the ability to separate tissue-type partial volume contribution(s). PURPOSE: To determine if: 1) white matter (WM) damage in mild traumatic brain injury (mTBI) is homogeneously diffuse, or if specific regions are more affected; 2) partial-volume-corrected, structure-specific 1 H MRSI voxel averaging is sensitive to regional WM metabolic abnormalities. STUDY TYPE: Retrospective cross-sectional cohort study. POPULATION: Twenty-seven subjects: 15 symptomatic mTBI patients, 12 matched controls. FIELD STRENGTH/SEQUENCE: 3T using 3D 1 H MRSI over a 360-cm3 volume of interest (VOI) centered over the corpus callosum, partitioned into 480 voxels, each 0.75 cm3 . ASSESSMENT: N-acetyl-aspartate (NAA), creatine, choline, and myo-inositol concentrations estimated in predominantly WM regions: body, genu, and splenium of the corpus callosum, corona radiata, frontal, and occipital WM. STATISTICAL TESTS: Analysis of covariance (ANCOVA) to compare patients with controls in terms of regional concentrations. The effect sizes (Cohen's d) of the mean differences were compared across regions and with previously published global data obtained with linear regression of the WM over the entire VOI in the same dataset. RESULTS: Despite patients' global VOI WM NAA being significantly lower than the controls', no regional differences were observed for any metabolite. Regional NAA comparisons, however, were all unidirectional (patients' NAA concentrations < controls') within a narrow range: 0.3 ≤ Cohen's d ≤ 0.6. DATA CONCLUSION: Since the patient group was symptomatic and exhibiting global WM NAA deficits, these findings suggest: 1) diffuse axonal mTBI damage; that is 2) below the 1 H MRSI detection threshold in small regions. Therefore, larger, ie, more sensitive, single-voxel 1 H MRS, placed anywhere in WM regions, may be well suited for mTBI 1 H MRS studies, given that these results are confirmed in other cohorts. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:1424-1432.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Proton Magnetic Resonance Spectroscopy/methods , White Matter/diagnostic imaging , Adolescent , Adult , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Male , Middle Aged , Retrospective Studies , Young Adult
14.
Pediatr Blood Cancer ; 65(9): e27225, 2018 09.
Article in English | MEDLINE | ID: mdl-29781569

ABSTRACT

Superior vena cava syndrome (SVCS) results in vascular, respiratory, and neurologic compromise. A systematic search was conducted to determine the prevalence of pediatric SVCS subtypes and identify clinical characteristics/treatment strategies that may influence overall outcomes. Data from 101 case reports/case series (142 patients) were analyzed. Morbidity (30%), mortality (18%), and acute complications (55%) were assessed as outcomes. Thrombosis was present in 36%, with multi-modal anticoagulation showing improved outcome by >50% (P = 0.004). Infant age (P = 0.04), lack of collaterals (P = 0.007), acute complications (P = 0.005), and clinical presentation may have prognostic utility that could influence clinical decisions and surveillance practices in pediatric SVCS.


Subject(s)
Superior Vena Cava Syndrome , Adolescent , Age of Onset , Anticoagulants/therapeutic use , Catheterization, Central Venous/adverse effects , Child , Child, Preschool , Evidence-Based Medicine , Heart Defects, Congenital/complications , Hematologic Neoplasms/complications , Humans , Infant , Infant, Newborn , Prevalence , Prognosis , Risk Factors , Stents , Superior Vena Cava Syndrome/classification , Superior Vena Cava Syndrome/epidemiology , Superior Vena Cava Syndrome/etiology , Superior Vena Cava Syndrome/therapy , Thrombophilia/complications , Treatment Outcome , Vascular Surgical Procedures
16.
Epilepsy Res ; 139: 85-91, 2018 01.
Article in English | MEDLINE | ID: mdl-29212047

ABSTRACT

OBJECTIVE: To test the hypothesis that localization-related epilepsy is associated with widespread neuronal dysfunction beyond the ictal focus, reflected by a decrease in patients' global concentration of their proton MR spectroscopy (1H-MRS) observed marker, N-acetyl-aspartate (NAA). METHODS: Thirteen patients with localization-related epilepsy (7 men, 6 women) 40±13 (mean±standard-deviation)years old, 8.3±13.4years of disease duration; and 14 matched controls, were scanned at 3 T with MRI and whole-brain (WB) 1H MRS. Intracranial fractions of brain volume, gray and white matter (fBV, fGM, fWM) were segmented from the MRI, and global absolute NAA creatine (Cr) and choline (Cho) concentrations were estimated from their WB 1H MRS. These metrics were compared between patients and controls using an unequal variance t test. RESULTS: Patients' fBV, fGM and fWM: 0.81±0.07, 0.47±0.04, 0.31±0.04 were not different from controls' 0.79±0.05, 0.48±0.04, 0.32±0.02; nor were their Cr and Cho concentrations: 7.1±1.1 and 1.3±0.2 millimolar (mM) versus 7.7±0.7 and 1.4±0.1mM (p>0.05 all). Patients' global NAA concentration: 11.5±1.5 mM, however, was 12% lower than controls' 13.0±0.8mM (p=0.004). CONCLUSIONS: These findings indicate that neuronal dysfunction in localization-related epilepsy extends globally, beyond the ictal zone, but without atrophy or spectroscopic evidence of other pathology. This suggests a diffuse decline in the neurons' health, rather than their number, early in the disease course. WB 1H-MRS assessment, therefore, may be a useful tool for quantification of global neuronal dysfunction load in epilepsy.


Subject(s)
Aspartic Acid/analogs & derivatives , Brain/diagnostic imaging , Brain/metabolism , Epilepsies, Partial/diagnostic imaging , Epilepsies, Partial/metabolism , Proton Magnetic Resonance Spectroscopy , Adult , Aspartic Acid/metabolism , Atrophy , Brain/pathology , Cohort Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size , Young Adult
17.
Neuroimaging Clin N Am ; 28(1): 91-105, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29157856

ABSTRACT

Although susceptibility-weighted imaging (SWI) studies have suggested an increased number of microhemorrhages in concussion, most show no significant differences compared with controls. There have been mixed results on using SWI to predict neurologic outcomes. Drawbacks include inability to time microhemorrhages and difficulty in attributing them to the concussion. Magnetic resonance spectroscopy (MRS) in concussion can identify metabolic abnormalities, with many studies showing correlations with clinical outcome. Applications in individual patients are impeded by conflicting data and lack of consensus on an optimal protocol. Therefore, currently MRS has most utility in group-level comparisons designed to reveal the pathophysiology of concussion.


Subject(s)
Brain Concussion/diagnostic imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Animals , Brain/diagnostic imaging , Humans
18.
NMR Biomed ; 30(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-28678429

ABSTRACT

Total N-acetyl-aspartate + N-acetyl-aspartate-glutamate (NAA), total creatine (Cr) and total choline (Cho) proton MRS (1 H-MRS) signals are often used as surrogate markers in diffuse neurological pathologies, but spatial coverage of this methodology is limited to 1%-65% of the brain. Here we wish to demonstrate that non-localized, whole-head (WH) 1 H-MRS captures just the brain's contribution to the Cho and Cr signals, ignoring all other compartments. Towards this end, 27 young healthy adults (18 men, 9 women), 29.9 ± 8.5 years old, were recruited and underwent T1 -weighted MRI for tissue segmentation, non-localizing, approximately 3 min WH 1 H-MRS (TE /TR /TI  = 5/10/940 ms) and 30 min 1 H-MR spectroscopic imaging (MRSI) (TE /TR  = 35/2100 ms) in a 360 cm3 volume of interest (VOI) at the brain's center. The VOI absolute NAA, Cr and Cho concentrations, 7.7 ± 0.5, 5.5 ± 0.4 and 1.3 ± 0.2 mM, were all within 10% of the WH: 8.6 ± 1.1, 6.0 ± 1.0 and 1.3 ± 0.2 mM. The mean NAA/Cr and NAA/Cho ratios in the WH were only slightly higher than the "brain-only" VOI: 1.5 versus 1.4 (7%) and 6.6 versus 5.9 (11%); Cho/Cr were not different. The brain/WH volume ratio was 0.31 ± 0.03 (brain ≈ 30% of WH volume). Air-tissue susceptibility-driven local magnetic field changes going from the brain outwards showed sharp gradients of more than 100 Hz/cm (1 ppm/cm), explaining the skull's Cr and Cho signal losses through resonance shifts, line broadening and destructive interference. The similarity of non-localized WH and localized VOI NAA, Cr and Cho concentrations and their ratios suggests that their signals originate predominantly from the brain. Therefore, the fast, comprehensive WH-1 H-MRS method may facilitate quantification of these metabolites, which are common surrogate markers in neurological disorders.


Subject(s)
Brain/metabolism , Magnetic Resonance Spectroscopy/methods , Protons , Adolescent , Adult , Aspartic Acid/analogs & derivatives , Choline/metabolism , Creatine/metabolism , Female , Humans , Male , Middle Aged , Young Adult
19.
Hum Brain Mapp ; 38(8): 4047-4063, 2017 08.
Article in English | MEDLINE | ID: mdl-28523763

ABSTRACT

Although MRI assessment of white matter lesions is essential for the clinical management of multiple sclerosis, the processes leading to the formation of lesions and underlying their subsequent MRI appearance are incompletely understood. We used proton MR spectroscopy to study the evolution of N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho), and myo-inositol (mI) in pre-lesional tissue, persistent and transient new lesions, as well as in chronic lesions, and related the results to quantitative MRI measures of T1-hypointensity and T2-volume. Within 10 patients with relapsing-remitting course, there were 180 regions-of-interest consisting of up to seven semi-annual follow-ups of normal-appearing white matter (NAWM, n = 10), pre-lesional tissue giving rise to acute lesions which resolved (n = 3) or persisted (n = 3), and of moderately (n = 9) and severely hypointense (n = 6) chronic lesions. Compared with NAWM, pre-lesional tissue had higher Cr and Cho, while compared with lesions, pre-lesional tissue had higher NAA. Resolving acute lesions showed similar NAA levels pre- and post-formation, suggesting no long-term axonal damage. In chronic lesions, there was an increase in mI, suggesting accumulating astrogliosis. Lesion volume was a better predictor of axonal health than T1-hypointensity, with lesions larger than 1.5 cm3 uniformly exhibiting very low (<4.5 millimolar) NAA concentrations. A positive correlation between longitudinal changes in Cho and in lesion volume in moderately hypointense lesions implied that lesion size is mediated by chronic inflammation. These and other results are integrated in a discussion on the steady-state metabolism of lesion evolution in multiple sclerosis, viewed in the context of conventional MRI measures. Hum Brain Mapp 38:4047-4063, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Magnetic Resonance Imaging , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/metabolism , Proton Magnetic Resonance Spectroscopy , Adult , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Choline/metabolism , Creatine/metabolism , Cross-Sectional Studies , Disease Progression , Female , Follow-Up Studies , Humans , Inositol/metabolism , Longitudinal Studies , Male , Organ Size , White Matter/diagnostic imaging , White Matter/metabolism , Young Adult
20.
NMR Biomed ; 30(7)2017 Jul.
Article in English | MEDLINE | ID: mdl-28272763

ABSTRACT

Metabolite levels measured using magnetic resonance spectroscopy (MRS) are often expressed as ratios rather than absolute concentrations. However, the inter-subject variability of the denominator metabolite can introduce uncertainty into a metabolite ratio. In a clinical setting, there are no guidelines on whether ratios or absolute quantification should be used for a more accurate classification of normal versus abnormal results based on their statistical properties. In a research setting, the choice of one over the other can have significant implications on sample size, which must be factored in at the study design stage. Herein, we derive the probability distribution function for the ratio of two normally distributed random variables, and present analytical expressions for the comparison of ratios with absolute quantification in terms of both sample size and area under the receiver operator characteristic curve. The two approaches are compared for typical metabolite values found in the literature, and their respective merits are illustrated using previously acquired clinical MRS data in two pathologies: mild traumatic brain injury and multiple sclerosis. Our analysis shows that the decision between ratios and absolute quantification is non-trivial: in some cases, ratios might offer a reduction in sample size, whereas, in others, absolute quantification might prove more desirable for individual (i.e. clinical) use. The decision is straightforward and exact guidelines are provided in the text, given that population means and standard deviations of numerator and denominator can be reliably estimated.


Subject(s)
Algorithms , Aspartic Acid/analogs & derivatives , Brain Injuries/metabolism , Brain/metabolism , Choline/metabolism , Data Interpretation, Statistical , Magnetic Resonance Spectroscopy/methods , Adult , Aspartic Acid/metabolism , Biomarkers/metabolism , Female , Humans , Male , Metabolic Flux Analysis/methods , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...