Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Microlife ; 4: uqad044, 2023.
Article in English | MEDLINE | ID: mdl-38025991

ABSTRACT

Bacteriophage BF23 is a close relative of phage T5, a prototypical Tequintavirus that infects Escherichia coli. BF23 was isolated in the middle of the XXth century and was extensively studied as a model object. Like T5, BF23 carries long ∼9.7 kb terminal repeats, injects its genome into infected cell in a two-stage process, and carries multiple specific nicks in its double-stranded genomic DNA. The two phages rely on different host secondary receptors-FhuA (T5) and BtuB (BF23). Only short fragments of the BF23 genome, including the region encoding receptor interacting proteins, have been determined. Here, we report the full genomic sequence of BF23 and describe the protein content of its virion. T5-like phages represent a unique group that resist restriction by most nuclease-based host immunity systems. We show that BF23, like other Tequintavirus phages, resist Types I/II/III restriction-modification host immunity systems if their recognition sites are located outside the terminal repeats. We also demonstrate that the BF23 avoids host-mediated methylation. We propose that inhibition of methylation is a common feature of Tequintavirus and Epseptimavirus genera phages, that is not, however, associated with their antirestriction activity.

2.
Dalton Trans ; 52(17): 5534-5544, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37009650

ABSTRACT

Transition metal-based two-dimensional nanomaterials with competing magnetic states are at the cutting edge of spintronic and low-power memory devices. In this paper, we present a Fe-rich NbFe1+xTe3 layered telluride (x ≈ 0.5), which shows an interplay of spin-glass and antiferromagnetic states below the Néel temperature of 179 K. The compound has a layered crystal structure, where the NbFeTe3 layers are terminated by the Te atoms and van der Waals gaps. Bulk single crystals grown by chemical vapor transport reactions possess the (1̄01) cleavage plane suitable for the exfoliation of two-dimensional nanomaterials. Combination of high-resolution transmission electron microscopy and powder X-ray diffraction reveals the zigzag ladders of Fe atoms inside the structural layers, as well as complementary zigzag chains of the partially occupied Fe positions in the interstitial region. Fe atoms carry large effective magnetic moment of 4.85(3)µB per atom in the paramagnetic state yielding intriguing magnetic properties of NbFe1+xTe3. They include frozen spin-glass state at low temperatures and spin-flop transition in high magnetic fields indicating promising flexibility of the magnetic system and its potential control by magnetic field or gate tuning in the spintronic devices and heterostructures.

3.
Polymers (Basel) ; 14(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36235880

ABSTRACT

The present work aimed to study the synergistic response of bioresorbable polylactide/bioactive wollastonite scaffolds towards mechanical stability, mesenchymal stromal cell colonization, and antibacterial activity in the physiological environment. Wollastonite was synthesized at 800 °C within 2 h by sol-gel combustion method. The surface area was found to be 1.51 m2/g, and Transmission Electron Microscopy (TEM) micrographs indicated the presence of porous structures. Fused deposition modeling was used to prepare 3D-printed polylactide/wollastonite and polylactide/hydroxyapatite scaffolds. Scanning Electron Microscopy (SEM) micrographs confirmed the interconnected porous structure and complex geometry of the scaffolds. The addition of wollastonite decreased the contact angle of the scaffolds. The mechanical testing of scaffolds examined by computational simulation, as well as machine testing, revealed their non-load-bearing capacity. The chemical constituent of the scaffolds was found to influence the attachment response of different cells on their surface. The incorporation of wollastonite effectively reduced live bacterial attachment, whereas the colonization of mesenchymal cells was improved. This observation confirms polylactide/wollastonite scaffold possesses both bactericidal as well as cytocompatible properties. Thus, the risk of peri-implant bacterial film formation can be prevented, and the biological fixation of the scaffold at the defect site can be enhanced by utilizing these composites.

4.
Molecules ; 27(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36080402

ABSTRACT

The reduction of p-nitrophenol to p-aminophenol has become a benchmark reaction for testing the efficiency of new catalytic systems. In this study, we use oxidatively modified carbon (OMC) as a structural support to develop a new cost-efficient nickel-based catalytic system. The newly developed material comprises single nickel ions, chemically bound to the oxygen functional groups on the OMC surface. The highly oxidized character of OMC ensures the high lateral density of nickel ions on its surface at relatively low nickel content. We demonstrate excellent catalytic properties of the new material by using it as a stationary phase in a prototype of a continuous flow reactor: the reagent fed into the reactor is p-nitrophenol, and the product, exiting the reactor, is the fully converted p-aminophenol. The catalytic properties of the new catalyst are associated with its specific morphology, and with high lateral density of active sites on the surface. The reaction can be considered as an example of single-atom catalysis. The resulting material can be used as an inexpensive but efficient catalyst for industrial wastewater treatment. The study opens the doors for the synthesis of a new series of catalytic systems comprising transition metal atoms on the OMC structural support.


Subject(s)
Carbon , Nickel , Carbon/chemistry , Catalysis , Nickel/chemistry , Nitrophenols , Oxidation-Reduction
5.
Angew Chem Int Ed Engl ; 61(39): e202209187, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-35929578

ABSTRACT

Topochemical reactions have led to great progress in the discovery of new metastable compounds with novel chemical and physical properties. With these reactions, the overall crystal structure of the host material is generally maintained. Here we report a topochemical synthesis of a hexagonal nitride hydride, h-Ca3 CrN3 H, by heating an orthorhombic nitride, o-Ca3 CrN3 , under hydrogen at 673 K, accompanied by a rotational structural transformation. The hydrogen intercalation modifies the Ca-N rock-salt-like atomic packing in o-Ca3 CrN3 to a face-sharing octahedral chain in h-Ca3 CrN3 H, mimicking a "hinged tessellation" movement. In addition, the h-Ca3 CrN3 H exhibited stable ammonia synthesis activity when used as a catalyst.

6.
Nanomaterials (Basel) ; 12(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35808104

ABSTRACT

Electrochemical energy storage plays a vital role in combating global climate change. Nowadays lithium-ion battery technology remains the most prominent technology for rechargeable batteries. A key performance-limiting factor of lithium-ion batteries is the active material of the positive electrode (cathode). Lithium- and manganese-rich nickel manganese cobalt oxide (LMR-NMC) cathode materials for Li-ion batteries are extensively investigated due to their high specific discharge capacities (>280 mAh/g). However, these materials are prone to severe capacity and voltage fade, which deteriorates the electrochemical performance. Capacity and voltage fade are strongly correlated with the particle morphology and nano- and microstructure of LMR-NMCs. By selecting an adequate synthesis strategy, the particle morphology and structure can be controlled, as such steering the electrochemical properties. In this manuscript we comparatively assessed the morphology and nanostructure of LMR-NMC (Li1.2Ni0.13Mn0.54Co0.13O2) prepared via an environmentally friendly aqueous solution-gel and co-precipitation route, respectively. The solution-gel (SG) synthesized material shows a Ni-enriched spinel-type surface layer at the {200} facets, which, based on our post-mortem high-angle annual dark-field scanning transmission electron microscopy and selected-area electron diffraction analysis, could partly explain the retarded voltage fade compared to the co-precipitation (CP) synthesized material. In addition, deviations in voltage fade and capacity fade (the latter being larger for the SG material) could also be correlated with the different particle morphology obtained for both materials.

7.
Phys Chem Chem Phys ; 24(15): 8901-8912, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35363241

ABSTRACT

Siliceous diatom frustules represent an up-and-coming platform for a range of bio-assisted nanofabrication processes able to overcome the complexity and high cost of current engineering technology solutions in terms of negligibly small power consumption and environmentally friendly processing combined with unique highly porous structures and properties. Herein, the modification of diatomite - a soft, loose, and fine-grained siliceous sedimentary rock composed of the remains of fossilized diatoms - with gold nanoparticles using layer-by-layer technology in combination with a freezing-induced loading approach is demonstrated. The obtained composite structures are characterized by dynamic light scattering, extinction spectroscopy, scanning (SEM) and transmission electron microscopy (TEM), and photoacoustic imaging techniques, and tested as a platform for surface-enhanced Raman scattering (SERS) using Rhodamine 6G. SEM, TEM, and energy dispersive X-ray spectroscopy (EDX) confirmed a dense coating of gold nanoparticles with an average size of 19 nm on the surface of the diatomite and within the pores. The photoacoustic signal excited at a wavelength of 532 nm increases with increasing loading cycles of up to three polyelectrolyte-gold nanoparticle bilayers. The hybrid materials based on diatomite modified with gold nanoparticles can be used as SERS substrates, but also as biosensors, catalysts, and platforms for advanced bioimaging.


Subject(s)
Diatoms , Metal Nanoparticles , Diatomaceous Earth , Diatoms/chemistry , Freezing , Gold/chemistry , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods
8.
Nanomaterials (Basel) ; 12(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35335811

ABSTRACT

Electrospinning is a well-established method for the fabrication of polymer biomaterials, including those with core-shell nanofibers. The variability of structures presents a great range of opportunities in tissue engineering and drug delivery by incorporating biologically active molecules such as drugs, proteins, and growth factors and subsequent control of their release into the target microenvironment to achieve therapeutic effect. The object of study is non-woven core-shell PVA-PEG-SiO2@PVA-GO fiber mats assembled by the technology of coaxial electrospinning. The task of the core-shell fiber development was set to regulate the degradation process under external factors. The dual structure was modified with silica nanoparticles and graphene oxide to ensure the fiber integrity and stability. The influence of the nano additives and crosslinking conditions for the composite was investigated as a function of fiber diameter, hydrolysis, and mechanical properties. Tensile mechanical tests and water degradation tests were used to reveal the fracture and dissolution behavior of the fiber mats and bundles. The obtained fibers were visualized by confocal fluorescence microscopy to confirm the continuous core-shell structure and encapsulation feasibility for biologically active components, selectively in the fiber core and shell. The results provide a firm basis to draw the conclusion that electrospun core-shell fiber mats have tremendous potential for biomedical applications as drug carriers, photocatalysts, and wound dressings.

9.
J Am Chem Soc ; 143(6): 2491-2499, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33417448

ABSTRACT

The discovery of building blocks offers new opportunities to develop and control properties of extended solids. Compounds with fluorite-type Bi2O2 blocks host various properties including lead-free ferroelectrics and photocatalysts. In this study, we show that triple-layered Bi2MO4 blocks (M = Bi, La, Y) in Bi2MO4Cl allow, unlike double-layered Bi2O2 blocks, to extensively control the conduction band. Depending on M, the Bi2MO4 block is truncated by Bi-O bond breaking, resulting in a series of n-zigzag chain structures (n = 1, 2, ∞ for M = Bi, La, Y, respectively). Thus, formed chain structures are responsible for the variation in the conduction band minimum (-0.36 to -0.94 V vs SHE), which is correlated to the presence or absence of mirror symmetry at Bi. Bi2YO4Cl shows higher photoconductivity than the most efficient Bi2O2-based photocatalyst with promising visible-light photocatalytic activity for water splitting. This study expands the possibilities of thickening (2D to 3D) and cutting (2D to 1D) fluorite-based blocks toward desired photocatalysis and other functions.

10.
Molecules ; 27(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35011318

ABSTRACT

Na9V14O35 (η-NaxV2O5) has been synthesized via solid-state reaction in an evacuated sealed silica ampoule and tested as electroactive material for Na-ion batteries. According to powder X-ray diffraction, electron diffraction and atomic resolution scanning transmission electron microscopy, Na9V14O35 adopts a monoclinic structure consisting of layers of corner- and edge-sharing VO5 tetragonal pyramids and VO4 tetrahedra with Na cations positioned between the layers, and can be considered as sodium vanadium(IV,V) oxovanadate Na9V104.1+O19(V5+O4)4. Behavior of Na9V14O35 as a positive and negative electrode in Na half-cells was investigated by galvanostatic cycling against metallic Na, synchrotron powder X-ray diffraction and electron energy loss spectroscopy. Being charged to 4.6 V vs. Na+/Na, almost 3 Na can be extracted per Na9V14O35 formula, resulting in electrochemical capacity of ~60 mAh g-1. Upon discharge below 1 V, Na9V14O35 uptakes sodium up to Na:V = 1:1 ratio that is accompanied by drastic elongation of the separation between the layers of the VO4 tetrahedra and VO5 tetragonal pyramids and volume increase of about 31%. Below 0.25 V, the ordered layered Na9V14O35 structure transforms into a rock-salt type disordered structure and ultimately into amorphous products of a conversion reaction at 0.1 V. The discharge capacity of 490 mAh g-1 delivered at first cycle due to the conversion reaction fades with the number of charge-discharge cycles.

11.
Inorg Chem ; 59(22): 16225-16237, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33137251

ABSTRACT

A new monoclinic α-polymorph of the Na2FePO4F fluoride-phosphate has been directly synthesized via a hydrothermal method for application in metal-ion batteries. The crystal structure of the as-prepared α-Na2FePO4F studied with powder X-ray and neutron diffraction (P21/c, a = 13.6753(10) Å, b = 5.2503(2) Å, c = 13.7202(8) Å, ß = 120.230(4)°) demonstrates strong antisite disorder between the Na and Fe atoms. As revealed with DFT-based calculations, α-Na2FePO4F has low migration barriers for Na+ along the main pathway parallel to the b axis, and an additional diffusion bypass allowing the Na+ cations to go around the Na/Fe antisite defects. These results corroborate with the extremely high experimental Na-ion diffusion coefficient of (1-5)·10-11 cm2·s-1, which is 2 orders of magnitude higher than that for the orthorhombic ß-polymorph ((5-10)·10-13 cm2·s-1). Being tested as a cathode material in Na- and Li-ion battery cells, monoclinic α-Na2FePO4F exhibits a reversible specific capacity of 90 and 80 mAh g-1, respectively.

12.
Dalton Trans ; 49(30): 10486-10497, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32687136

ABSTRACT

Layered Li-rich/Mn-rich NMC (LMR-NMC) is characterized by high initial specific capacities of more than 250 mA h g-1, lower cost due to a lower Co content and higher thermal stability than LiCoO2. However, its commercialisation is currently still hampered by significant voltage fade, which is caused by irreversible transition metal ion migration to emptied Li positions via tetrahedral interstices upon electrochemical cycling. This structural change is strongly correlated with anionic redox chemistry of the oxygen sublattice and has a detrimental effect on electrochemical performance. In a fully charged state, up to 4.8 V vs. Li/Li+, Mn4+ is prone to migrate to the Li layer. The replacement of Mn4+ for an isovalent cation such as Sn4+ which does not tend to adopt tetrahedral coordination and shows a higher metal-oxygen bond strength is considered to be a viable strategy to stabilize the layered structure upon extended electrochemical cycling, hereby decreasing voltage fade. The influence of Sn4+ on the voltage fade in partially charged LMR-NMC is not yet reported in the literature, and therefore, we have investigated the structure and the corresponding electrochemical properties of LMR-NMC with different Sn concentrations. We determined the substitution limit of Sn4+ in Li1.2Ni0.13Co0.13Mn0.54-xSnxO2 by powder X-ray diffraction and transmission electron microscopy to be x≈ 0.045. The limited solubility of Sn is subsequently confirmed by density functional theory calculations. Voltage fade for x = 0 and x = 0.027 has been comparatively assessed within the 3.00 V-4.55 V (vs. Li/Li+) potential window, from which it is concluded that replacing Mn4+ by Sn4+ cannot be considered as a viable strategy to inhibit voltage fade within this window, at least with the given restricted doping level.

13.
Inorg Chem ; 59(9): 6528-6540, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32286842

ABSTRACT

Solid electrolytes have regained tremendous interest recently in light of the exposed vulnerability of current rechargeable battery technologies. While designing solid electrolytes, most efforts concentrated on creating structural disorder (vacancies, interstitials, etc.) in a cationic Li/Na sublattice to increase ionic conductivity. In phosphates, the ionic conductivity can also be increased by rotational disorder in the anionic sublattice, via a paddle-wheel mechanism. Herein, we report on Na4Zn(PO4)2 which is designed from Na3PO4, replacing Na+ with Zn2+ and introducing a vacancy for charge balance. We show that Na4Zn(PO4)2 undergoes a series of structural transitions under temperature, which are associated with an increase in ionic conductivity by several orders of magnitude. Our detailed crystallographic study, combining electron, neutron, and X-ray powder diffraction, reveals that the room-temperature form, α-Na4Zn(PO4)2, contains orientationally ordered PO4 groups, which undergo partial and full rotational disorder in the high-temperature ß- and γ-polymorphs, respectively. We furthermore showed that the highly conducting γ-polymorph could be stabilized at room temperature by ball-milling, whereas the ß-polymorph can be stabilized by partial substitution of Zn2+ with Ga3+ and Al3+. These findings emphasize the role of rotational disorder as an extra parameter to design new solid electrolytes.

14.
Inorg Chem ; 58(1): 610-621, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30565920

ABSTRACT

Two new sodium nickel phosphates, Na5Ni2(PO4)3·H2O (I) and Na6Ni2(PO4)3OH (II), have been synthesized hydrothermally and characterized by synchrotron X-ray diffraction, electron diffraction, low-temperature thermodynamic and magnetic measurements, and ab initio calculations. Unlike the majority of Ni2+ compounds, I and II show predominant ferromagnetic exchange couplings. I crystallizes in the monoclinic space group P21/ n ( a = 14.0395(4) Å, b = 5.1847(14) Å, c = 16.4739(4) Å, ß = 110.4186(14)°) and features chains of ferromagnetically coupled Ni2+ ions. In II with the orthorhombic space group Pcmb ( a = 7.5007(15) Å, b = 21.4661(4) Å, c = 7.1732(15) Å), the ferromagnetically coupled Ni2+ ions form dimers arranged on a spin ladder. Both compounds represent rare examples of quasi-one-dimensional ferromagnets. Structural features behind this unusual magnetic behavior are discussed.

15.
Dalton Trans ; 45(42): 16938-16947, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-27722484

ABSTRACT

A new ternary telluride, Fe3-δAs1-yTe2, was synthesized from elements at 600 °C. It crystallizes in the hexagonal P63/mmc space group with the unit cell parameters a = 3.85091(9) Å and c = 17.1367(4) Å for δ = 0.3 and y = 0.04. Its layered crystal structure contains partially occupied intralayer and interlayer Fe positions, which give rise to significant nonstoichiometry: Fe3-δAs1-yTe2 was found to possess the homogeneity range of 0.25 < δ < 0.45 and y = 0.04. Regions of local vacancy ordering alternate with regions of randomly distributed vacancies, so that the ordering of Fe atoms and vacancies is not complete in the average structure. Clear evidence of the magnetic phase transition is obtained by thermodynamic measurements, Mössbauer spectroscopy, and neutron powder diffraction. Magnetic susceptibility measurements reveal weak ferromagnetism below TC = 123 K with a net moment of MS∼ 0.1µB/Fe at T = 2 K. This transition is confirmed by differential scanning calorimetry. Additionally, neutron powder diffraction indicates the onset of a complex AFM-like magnetic ordering below 100 K.

16.
Inorg Chem ; 52(14): 8272-9, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23802995

ABSTRACT

A first germanium-based cationic clathrate of type-III, Ge(129.3)P(42.7)Te(21.53), was synthesized and structurally characterized (space group P4(2)/mnm, a = 19.948(3) Å, c = 10.440(2) Å, Z = 1). In its crystal structure, germanium and phosphorus atoms form three types of polyhedral cages centered with Te atoms. The polyhedra share pentagonal and hexagonal faces to form a 3D framework. Despite the complexity of the crystal structure, the Ge(129.3)P(42.7)Te(21.53) composition corresponds to the Zintl counting scheme with a good accuracy. Ge(129.3)P(42.7)Te(21.53) demonstrates semiconducting/insulating behavior of electric resistivity, high positive Seebeck coefficient (500 µV K(-1) at 300 K), and low thermal conductivity (<0.92 W m(-1) K(-1)) within the measured temperature range.

17.
Inorg Chem ; 52(2): 577-88, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23276305

ABSTRACT

A first clathrate compound with selenium guest atoms, [Ge(46-x)P(x)]Se(8-y)□(y) (x = 15.4(1); y = 0-2.65; □ denotes a vacancy), was synthesized as a single-phase and structurally characterized. It crystallizes in the space group Fm3 with the unit cell parameter a varying from 20.310(2) to 20.406(2) Å and corresponding to a 2 × 2 × 2 supercell of a usual clathrate-I structure. The superstructure is formed due to the symmetrical arrangement of the three-bonded framework atoms appearing as a result of the framework transformation of the parent clathrate-I structure. Selenium guest atoms occupy two types of polyhedral cages inside the positively charged framework; all selenium atoms in the larger cages form a single covalent bond with the framework atoms, relating the title compounds to a scanty family of semiclathrates. According to the measurements of electrical resistivity and Seebeck coefficient, [Ge(46-x)P(x)]Se(8-y)□(y) is an n-type semiconductor with E(g) = 0.41 eV for x = 15.4(1) and y = 0; it demonstrates the maximal thermoelectric power factor of 2.3 × 10(-5) W K(-2) m(-1) at 660 K.

18.
J Am Chem Soc ; 133(50): 20488-99, 2011 Dec 21.
Article in English | MEDLINE | ID: mdl-22081872

ABSTRACT

A general strategy for low-temperature processing of colloidal nanocrystals into all-inorganic films is reported. The present methodology goes beyond the traditional ligand-interlinking scheme and relies on encapsulation of morphologically defined nanocrystal arrays into a matrix of a wide-band gap semiconductor, which preserves optoelectronic properties of individual nanoparticles while rendering the nanocrystal film photoconductive. Fabricated solids exhibit excellent thermal stability, which is attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces, and show compelling light-harvesting performance in prototype solar cells.

19.
Nano Lett ; 11(7): 2919-26, 2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21615085

ABSTRACT

The effect of hole localization on photocatalytic activity of Pt-tipped semiconductor nanocrystals is investigated. By tuning the energy balance at the semiconductor-ligand interface, we demonstrate that hydrogen production on Pt sites is efficient only when electron-donating molecules are used for stabilizing semiconductor surfaces. These surfactants play an important role in enabling an efficient and stable reduction of water by heterostructured nanocrystals as they fill vacancies in the valence band of the semiconductor domain, preventing its degradation. In particular, we show that the energy of oxidizing holes can be efficiently transferred to a ligand moiety, leaving the semiconductor domain intact. This allows reusing the inorganic portion of the "degraded" nanocrystal-ligand system simply by recharging these nanoparticles with fresh ligands.


Subject(s)
Hydrogen/chemistry , Nanoparticles/chemistry , Platinum/chemistry , Nanotechnology , Particle Size , Semiconductors , Surface Properties
20.
Chemistry ; 17(20): 5719-26, 2011 May 09.
Article in English | MEDLINE | ID: mdl-21469231

ABSTRACT

Novel compounds [Ge(46-x) P(x) ]Te(y) (13.9≤x≤15.6, 5.92≤y≤7.75) with clathrate-like structures have been prepared and structurally characterized. They crystallize in the space group Fm ̅3 with the unit cell parameter changing from 20.544(2) to 20.698(2) Å (Z=8) on going from x=13.9 to x=15.6. Their crystal structure is composed of a covalently bonded Ge-P framework that hosts tellurium atoms in the guest positions and can be viewed as a peculiar variant of the type I clathrate superstructure. In contrast to the conventional type I clathrates, [Ge(46-x) P(x) ]Te(y) contain tricoordinated (3b) atoms and no vacancies in the framework positions. As a consequence of the transformation of the framework, the majority of the guest tellurium atoms form a single covalent bond with the host framework and thus the title compounds are the first representative of semiclathrates with covalent bonding. A comparison is made with silicon clathrates and the evolution of the crystal structure upon changing the tellurium content is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...