Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Front Neurol ; 14: 1230495, 2023.
Article in English | MEDLINE | ID: mdl-37789890

ABSTRACT

Background: This study aims to investigate the presence of spatial cognitive impairments in patients with acute unilateral peripheral vestibulopathy (vestibular neuritis, AUPV) during both the acute phase and the recovery phase. Methods: A total of 72 AUPV patients (37 with right-sided AUPV and 35 with left-sided AUPV; aged 34-80 years, median 60.5; 39 males, 54.2%) and 35 healthy controls (HCs; aged 43-75 years, median 59; 20 males, 57.1%) participated in the study. Patients underwent comprehensive neurotological assessments, including video-oculography, video head impulse and caloric tests, ocular and cervical vestibular-evoked myogenic potentials, and pure-tone audiometry. Additionally, the Visual Object and Space Perception (VOSP) battery was used to evaluate visuospatial perception, while the Block design test and Corsi block-tapping test assessed visuospatial memory within the first 2 days (acute phase) and 4 weeks after symptom onset (recovery phase). Results: Although AUPV patients were able to successfully perform visuospatial perception tasks within normal parameters, they demonstrated statistically worse performance on the visuospatial memory tests compared to HCs during the acute phase. When comparing right versus left AUPV groups, significant decreased scores in visuospatial perception and memory were observed in the right AUPV group relative to the left AUPV group. In the recovery phase, patients showed substantial improvements even in these previously diminished visuospatial cognitive performances. Conclusion: AUPV patients showed different spatial cognition responses, like spatial memory, depending on the affected ear, improving with vestibular compensation over time. We advocate both objective and subjective visuospatial assessments and the development of tests to detect potential cognitive deficits after unilateral vestibular impairments.

2.
J Neurol ; 270(1): 82-100, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36255522

ABSTRACT

Combining magnetic resonance imaging (MRI) sequences that permit the determination of vestibular nerve angulation (NA = change of nerve caliber or direction), structural nerve integrity via diffusion tensor imaging (DTI), and exclusion of endolymphatic hydrops (ELH) via delayed gadolinium-enhanced MRI of the inner ear (iMRI) could increase the diagnostic accuracy in patients with vestibular paroxysmia (VP). Thirty-six participants were examined, 18 with VP (52.6 ± 18.1 years) and 18 age-matched with normal vestibulocochlear testing (NP 50.3 ± 16.5 years). This study investigated whether (i) NA, (ii) DTI changes, or (iii) ELH occur in VP, and (iv) to what extent said parameters relate. Methods included vestibulocochlear testing and MRI data analyses for neurovascular compression (NVC) and NA verification, DTI and ELS quantification. As a result, (i) NA increased NVC specificity. (ii) DTI structural integrity was reduced on the side affected by VP (p < 0.05). (iii) 61.1% VP showed mild ELH and higher asymmetry indices than NP (p > 0.05). (iv) "Disease duration" and "total number of attacks" correlated with the decreased structural integrity of the affected nerve in DTI (p < 0.001). NVC distance within the nerve's root-entry zone correlated with nerve function (Roh = 0.72, p < 0.001), nerve integrity loss (Roh = - 0.638, p < 0.001), and ELS volume (Roh = - 0.604, p < 0.001) in VP. In conclusion, this study is the first to link eighth cranial nerve function, microstructure, and ELS changes in VP to clinical features and increased vulnerability of NVC in the root-entry zone. Combined MRI with NVC or NA verification, DTI and ELS quantification increased the diagnostic accuracy at group-level but did not suffice to diagnose VP on a single-subject level due to individual variability and lack of diagnostic specificity.


Subject(s)
Endolymphatic Hydrops , Vestibule, Labyrinth , Humans , Adult , Middle Aged , Aged , Diffusion Tensor Imaging , Vestibular Nerve , Endolymphatic Hydrops/diagnostic imaging , Magnetic Resonance Imaging/methods
3.
J Neurol ; 270(1): 71-81, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36197569

ABSTRACT

Knowledge of the physiological endolymphatic space (ELS) is necessary to estimate endolymphatic hydrops (ELH) in patients with vestibulocochlear syndromes. Therefore, the current study investigated age-dependent changes in the ELS of participants with normal vestibulocochlear testing. Sixty-four ears of 32 participants with normal vestibulocochlear testing aged between 21 and 75 years (45.8 ± 17.2 years, 20 females, 30 right-handed, two left-handed) were examined by intravenous delayed gadolinium-enhanced magnetic resonance imaging of the inner ear (iMRI). Clinical diagnostics included neuro-otological assessment, video-oculography during caloric stimulation, and head-impulse test. iMRI data analysis provided semi-quantitative visual grading and automatic algorithmic quantitative segmentation of ELS volume (3D, mm3) using a deep learning-based segmentation of the inner ear's total fluid space (TFS) and volumetric local thresholding, as described earlier. As a result, following a 4-point ordinal scale, a mild ELH (grade 1) was found in 21/64 (32.8%) ears uni- or bilaterally in either cochlear, vestibulum, or both. Age and ELS were found to be positively correlated for the inner ear (r(64) = 0.33, p < 0.01), and vestibulum (r(64) = 0.25, p < 0.05). For the cochlea, the values correlated positively without reaching significance (r(64) = 0.21). In conclusion, age-dependent increases of the ELS should be considered when evaluating potential ELH in single subjects and statistical group comparisons.


Subject(s)
Ear, Inner , Endolymphatic Hydrops , Female , Humans , Young Adult , Adult , Middle Aged , Aged , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods , Syndrome
4.
Front Neurol ; 13: 663200, 2022.
Article in English | MEDLINE | ID: mdl-35645963

ABSTRACT

Background: In-vivo MR-based high-resolution volumetric quantification methods of the endolymphatic hydrops (ELH) are highly dependent on a reliable segmentation of the inner ear's total fluid space (TFS). This study aimed to develop a novel open-source inner ear TFS segmentation approach using a dedicated deep learning (DL) model. Methods: The model was based on a V-Net architecture (IE-Vnet) and a multivariate (MR scans: T1, T2, FLAIR, SPACE) training dataset (D1, 179 consecutive patients with peripheral vestibulocochlear syndromes). Ground-truth TFS masks were generated in a semi-manual, atlas-assisted approach. IE-Vnet model segmentation performance, generalizability, and robustness to domain shift were evaluated on four heterogenous test datasets (D2-D5, n = 4 × 20 ears). Results: The IE-Vnet model predicted TFS masks with consistently high congruence to the ground-truth in all test datasets (Dice overlap coefficient: 0.9 ± 0.02, Hausdorff maximum surface distance: 0.93 ± 0.71 mm, mean surface distance: 0.022 ± 0.005 mm) without significant difference concerning side (two-sided Wilcoxon signed-rank test, p>0.05), or dataset (Kruskal-Wallis test, p>0.05; post-hoc Mann-Whitney U, FDR-corrected, all p>0.2). Prediction took 0.2 s, and was 2,000 times faster than a state-of-the-art atlas-based segmentation method. Conclusion: IE-Vnet TFS segmentation demonstrated high accuracy, robustness toward domain shift, and rapid prediction times. Its output works seamlessly with a previously published open-source pipeline for automatic ELS segmentation. IE-Vnet could serve as a core tool for high-volume trans-institutional studies of the inner ear. Code and pre-trained models are available free and open-source under https://github.com/pydsgz/IEVNet.

5.
Neuroimage Clin ; 33: 102953, 2022.
Article in English | MEDLINE | ID: mdl-35139478

ABSTRACT

OBJECTIVE: The integration of somatosensory, ocular motor and vestibular signals is necessary for self-location in space and goal-directed action. We aimed to detect remote changes in the cerebral cortex after thalamic infarcts to reveal the thalamo-cortical connections necessary for multisensory processing and ocular motor control. METHODS: Thirteen patients with unilateral ischemic thalamic infarcts presenting with vestibular, somatosensory, and ocular motor symptoms were examined longitudinally in the acute phase and after six months. Voxel- and surface-based morphometry were used to detect changes in vestibular and multisensory cortical areas and known hubs of central ocular motor processing. The results were compared with functional connectivity data in 50 healthy volunteers. RESULTS: Patients with paramedian infarcts showed impaired saccades and vestibular perception, i.e., tilts of the subjective visual vertical (SVV). The most common complaint in these patients was double vision or vertigo / dizziness. Posterolateral thalamic infarcts led to tilts of the SVV and somatosensory deficits without vertigo. Tilts of the SVV were higher in paramedian compared to posterolateral infarcts (median 11.2° vs 3.8°). Vestibular and ocular motor symptoms recovered within six months. Somatosensory deficits persisted. Structural longitudinal imaging showed significant volume reduction in subcortical structures connected to the infarcted thalamic nuclei (vestibular nuclei region, dentate nucleus region, trigeminal root entry zone, medial lemniscus, superior colliculi). Volume loss was evident in connections to the frontal, parietal and cingulate lobes. Changes were larger in the ipsilesional hemisphere but were also detected in homotopical regions contralesionally. The white matter volume reduction led to deformation of the cortical projection zones of the infarcted nuclei. CONCLUSIONS: White matter volume loss after thalamic infarcts reflects sensory input from the brainstem as well the cortical projections of the main affected nuclei for sensory and ocular motor processing. Changes in the cortical geometry seem not to reflect gray matter atrophy but rather reshaping of the cortical surface due to the underlying white matter atrophy.


Subject(s)
Vestibule, Labyrinth , White Matter , Cerebral Cortex/diagnostic imaging , Cerebral Infarction/complications , Cerebral Infarction/diagnostic imaging , Humans , Thalamus/diagnostic imaging , White Matter/diagnostic imaging
6.
Eur J Neurol ; 29(5): 1514-1523, 2022 05.
Article in English | MEDLINE | ID: mdl-35098611

ABSTRACT

BACKGROUND AND PURPOSE: We aimed to delineate common principles of reorganization after infarcts of the subcortical vestibular circuitry related to the clinical symptomatology. Our hypothesis was that the recovery of specific symptoms is associated with changes in distinct regions within the core vestibular, somatosensory, and visual cortical and subcortical networks. METHODS: We used voxel- and surface-based morphometry to investigate structural reorganization of subcortical and cortical brain areas in 42 patients with a unilateral, subcortical infarct with vestibular and ocular motor deficits in the acute phase. The patients received structural neuroimaging and clinical monitoring twice (acute phase and after 6 months) to detect within-subject changes over time. RESULTS: In patients with vestibular signs such as tilts of the subjective visual vertical (SVV) and ocular torsion in the acute phase, significant volumetric increases in the superficial white matter around the parieto-opercular (retro-)insular vestibular cortex (PIVC) were found at follow-up. In patients with SVV tilts, spontaneous nystagmus, and rotatory vertigo in the acute phase, gray matter volume decreases were located in the cerebellum and the visual cortex bilaterally at follow-up. Patients with saccade pathology demonstrated volumetric decreases in cerebellar, thalamic, and cortical centers for ocular motor control. CONCLUSIONS: The findings support the role of the PIVC as the key hub for vestibular processing and reorganization. The volumetric decreases represent the reciprocal interaction of the vestibular, visual, and ocular motor systems during self-location and egomotion detection. A modulation in vestibular and ocular motor as well as visual networks was induced independently of the vestibular lesion site.


Subject(s)
Vestibule, Labyrinth , White Matter , Brain/pathology , Cerebral Cortex , Cerebral Infarction/pathology , Humans , Vertigo
7.
Front Neurol ; 12: 647296, 2021.
Article in English | MEDLINE | ID: mdl-33967941

ABSTRACT

In-vivo non-invasive verification of endolymphatic hydrops (ELH) by means of intravenous delayed gadolinium (Gd) enhanced magnetic resonance imaging of the inner ear (iMRI) is rapidly developing into a standard clinical tool to investigate peripheral vestibulo-cochlear syndromes. In this context, methodological comparative studies providing standardization and comparability between labs seem even more important, but so far very few are available. One hundred eight participants [75 patients with Meniere's disease (MD; 55.2 ± 14.9 years) and 33 vestibular healthy controls (HC; 46.4 ± 15.6 years)] were examined. The aim was to understand (i) how variations in acquisition protocols influence endolymphatic space (ELS) MR-signals; (ii) how ELS quantification methods correlate to each other or clinical data; and finally, (iii) how ELS extent influences MR-signals. Diagnostics included neuro-otological assessment, video-oculography during caloric stimulation, head-impulse test, audiometry, and iMRI. Data analysis provided semi-quantitative (SQ) visual grading and automatic algorithmic quantitative segmentation of ELS area [2D, mm2] and volume [3D, mm3] using deep learning-based segmentation and volumetric local thresholding. Within the range of 0.1-0.2 mmol/kg Gd dosage and a 4 h ± 30 min time delay, SQ grading and 2D- or 3D-quantifications were independent of signal intensity (SI) and signal-to-noise ratio (SNR; FWE corrected, p < 0.05). The ELS quantification methods used were highly reproducible across raters or thresholds and correlated strongly (0.3-0.8). However, 3D-quantifications showed the least variability. Asymmetry indices and normalized ELH proved the most useful for predicting quantitative clinical data. ELH size influenced SI (cochlear basal turn p < 0.001), but not SNR. SI could not predict the presence of ELH. In conclusion, (1) Gd dosage of 0.1-0.2 mmol/kg after 4 h ± 30 min time delay suffices for ELS quantification. (2) A consensus is needed on a clinical SQ grading classification including a standardized level of evaluation reconstructed to anatomical fixpoints. (3) 3D-quantification methods of the ELS are best suited for correlations with clinical variables and should include both ears and ELS values reported relative or normalized to size. (4) The presence of ELH increases signal intensity in the basal cochlear turn weakly, but cannot predict the presence of ELH.

8.
Front Neurol ; 12: 594481, 2021.
Article in English | MEDLINE | ID: mdl-33776877

ABSTRACT

Objective: Intravenous contrast agent enhanced, high-resolution magnetic resonance imaging of the inner ear (iMRI) confirmed that patients with Menière's disease (MD) and vestibular migraine (VM) could present with endolymphatic hydrops (EH). The present study aimed to investigate EH characteristics and their interrelation to neurotologic testing in patients with VM, MD, or VM with concurrent MD (VM-MD). Methods: Sixty-two patients (45 females, aged 23-81 years) with definite or probable VM (n = 25, 19 definite), MD (n = 29, 17 definite), or showing characteristics of both diseases (n = 8) were included in this study. Diagnostic workup included neurotologic assessments including video-oculography (VOG) during caloric stimulation and head-impulse test (HIT), ocular and cervical vestibular evoked myogenic potentials (o/cVEMP), pure tone audiometry (PTA), as well as iMRI. EH's degree was assessed visually and via volumetric quantification using a probabilistic atlas-based segmentation of the bony labyrinth and volumetric local thresholding (VOLT). Results: Although a relevant number of VM patients reported varying auditory symptoms (13 of 25, 52.0%), EH in VM was only observed twice. In contrast, EH in VM-MD was prevalent (2/8, 25%) and in MD frequent [23/29, 79.3%; χ2(2) = 29.1, p < 0.001, φ = 0.7]. Location and laterality of EH and neurophysiological testing classifications were highly associated (Fisher exact test, p < 0.005). In MD, visual semi-quantitative grading and volumetric quantification correlated highly to each other (r S = 0.8, p < 0.005, two-sided) and to side differences in VOG during caloric irrigation (vestibular EH ipsilateral: r S = 0.6, p < 0.05, two-sided). In VM, correlations were less pronounced. VM-MD assumed an intermediate position between VM and MD. Conclusion: Cochlear and vestibular hydrops can occur in MD and VM patients with auditory symptoms; this suggests inner ear damage irrespective of the diagnosis of MD or VM. The EH grades often correlated with auditory symptoms such as hearing impairment and tinnitus. Further research is required to uncover whether migraine is one causative factor of EH or whether EH in VM patients with auditory symptoms suggests an additional pathology due to MD.

9.
Neuroimage Clin ; 30: 102603, 2021.
Article in English | MEDLINE | ID: mdl-33676164

ABSTRACT

OBJECTIVE: Structural reorganization following cerebellar infarcts is not yet known. This study aimed to demonstrate structural volumetric changes over time in the cortical vestibular and multisensory areas (i.e., brain plasticity) after acute cerebellar infarcts with vestibular and ocular motor symptoms. Additionally, we evaluated whether structural reorganization in the patients topographically correlates with cerebello-cortical connectivity that can be observed in healthy participants. METHODS: We obtained high-resolution structural imaging in seven patients with midline cerebellar infarcts at two time points. These data were compared to structural imaging of a group of healthy age-matched controls using voxel-based morphometry (2×2 ANOVA approach). The maximum overlap of the infarcts was used as a seed region for a separate resting-state functional connectivity analysis in healthy volunteers. RESULTS: Volumetric changes were detected in the multisensory cortical vestibular areas around the parieto-opercular and (retro-) insular cortex. Furthermore, structural reorganization was evident in parts of the frontal, temporal, parietal, limbic, and occipital lobes and reflected functional connections between the main infarct regions in the cerebellum and the cerebral cortex in healthy individuals. CONCLUSIONS: This study demonstrates structural reorganization in the parieto-opercular insular vestibular cortex after acute vestibulo-cerebellar infarcts. Additionally, the widely distributed structural reorganization after midline cerebellar infarcts provides additional in vivo evidence for the multifaceted contribution of cerebellar processing to cortical functions that extend beyond vestibular or ocular motor function.


Subject(s)
Stroke , Vestibule, Labyrinth , Cerebral Cortex/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neuronal Plasticity , Stroke/diagnostic imaging
10.
Ann Clin Transl Neurol ; 7(10): 1788-1801, 2020 10.
Article in English | MEDLINE | ID: mdl-32856758

ABSTRACT

OBJECTIVE: Patients with acute central vestibular syndrome suffer from vertigo, spontaneous nystagmus, postural instability with lateral falls, and tilts of visual vertical. Usually, these symptoms compensate within months. The mechanisms of compensation in vestibular infarcts are yet unclear. This study focused on structural changes in gray and white matter volume that accompany clinical compensation. METHODS: We studied patients with acute unilateral brain stem infarcts prospectively over 6 months. Structural changes were compared between the acute phase and follow-up with a group of healthy controls using voxel-based morphometry. RESULTS: Restitution of vestibular function following brain stem infarcts was accompanied by downstream structural changes in multisensory cortical areas. The changes depended on the location of the infarct along the vestibular pathways in patients with pathological tilts of the SVV and on the quality of the vestibular percept (rotatory vs graviceptive) in patients with pontomedullary infarcts. Patients with pontomedullary infarcts with vertigo or spontaneous nystagmus showed volumetric increases in vestibular parietal opercular multisensory and (retro-) insular areas with right-sided preference. Compensation of graviceptive deficits was accompanied by adaptive changes in multiple multisensory vestibular areas in both hemispheres in lower brain stem infarcts and by additional changes in the motor system in upper brain stem infarcts. INTERPRETATION: This study demonstrates multisensory neuroplasticity in both hemispheres along with the clinical compensation of vestibular deficits following unilateral brain stem infarcts. The data further solidify the concept of a right-hemispheric specialization for core vestibular processing. The identification of cortical structures involved in central compensation could serve as a platform to launch novel rehabilitative treatments such as transcranial stimulations.


Subject(s)
Brain Stem Infarctions/pathology , Brain Stem/pathology , Brain/pathology , Vestibule, Labyrinth/pathology , Adult , Brain/physiopathology , Brain Stem/physiopathology , Brain Stem Infarctions/physiopathology , Female , Functional Laterality/physiology , Humans , Male , Middle Aged , Neuronal Plasticity/physiology , Vertigo/pathology , Vertigo/physiopathology
11.
J Neurol ; 267(Suppl 1): 79-90, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32462347

ABSTRACT

Visually induced self-motion perception (vection) relies on visual-vestibular interaction. Imaging studies using vestibular stimulation have revealed a vestibular thalamo-cortical dominance in the right hemisphere in right handers and the left hemisphere in left handers. We investigated if the behavioural characteristics and neural correlates of vection differ between healthy left and right-handed individuals. 64-channel EEG was recorded while 25 right handers and 25 left handers were exposed to vection-compatible roll motion (coherent motion) and a matched, control condition (incoherent motion). Behavioural characteristics, i.e. vection presence, onset latency, duration and subjective strength, were also recorded. The behavioural characteristics of vection did not differ between left and right handers (all p > 0.05). Fast Fourier Transform (FFT) analysis revealed significant decreases in alpha power during vection-compatible roll motion (p < 0.05). The topography of this decrease was handedness-dependent, with left handers showing a left lateralized centro-parietal decrease and right handers showing a bilateral midline centro-parietal decrease. Further time-frequency analysis, time locked to vection onset, revealed a comparable decrease in alpha power around vection onset and a relative increase in alpha power during ongoing vection, for left and right handers. No effects were observed in theta and beta bands. Left and right-handed individuals show vection-related alpha power decreases at different topographical regions, possibly related to the influence of handedness-dependent vestibular dominance in the visual-vestibular interaction that facilitates visual self-motion perception. Despite this difference in where vection-related activity is observed, left and right handers demonstrate comparable perception and underlying alpha band changes during vection.


Subject(s)
Motion Perception , Vestibule, Labyrinth , Brain/diagnostic imaging , Electroencephalography , Functional Laterality , Humans
12.
J Neurol ; 266(Suppl 1): 52-61, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31422454

ABSTRACT

Intravenous contrast agent-enhanced magnetic resonance imaging of the endolymphatic space (ELS) of the inner ear permits direct, in-vivo, non-invasive visualization of labyrinthine structures and thus verification of endolymphatic hydrops (ELH). However, current volumetric assessment approaches lack normalization. The aim of this study was to develop a probabilistic atlas of the inner ear's bony labyrinth as a first step towards an automated and reproducible volume-based quantification of the ELS. The study included three different datasets: a source dataset (D1) to build the probabilistic atlas and two testing sets (D2, D3). D1 included 24 right-handed patients (12 females; mean age 51.5 ± 3.9 years) and D2 5 patients (3 female; mean age 48.8 ± 5.01 years) with vestibular migraine without ELH or any measurable vestibular deficits. D3 consisted of five patients (one female; mean age 46 ± 5.2 years) suffering from unilateral Menière's disease and ELH. Data processing comprised three steps: preprocessing using an affine and deformable fusion registration pipeline, computation of an atlas for the left and right inner ear using a label-assisted approach, and validation of the atlas based on localizing and segmenting previously unseen ears. The three-dimensional probabilistic atlas of the inner ear's bony labyrinth consisted of the internal acoustic meatus and inner ears (including cochlea, otoliths, and semicircular canals) for both sides separately. The analyses showed a high level of agreement between the atlas-based segmentation and the manual gold standard with an overlap of 89% for the right ear and 86% for the left ear (measured by dice scores). This probabilistic in vivo atlas of the human inner ear's bony labyrinth and thus of the inner ear's total fluid space for both ears represents a necessary step towards a normalized, easily reproducible and reliable volumetric quantification of the perilymphatic and endolymphatic space in view of MR volumetric assessment of ELH. The proposed atlas lays the groundwork for state-of-the-art approaches (e.g., deep learning) and will be provided to the scientific community.


Subject(s)
Atlases as Topic , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Vestibule, Labyrinth/anatomy & histology , Vestibule, Labyrinth/diagnostic imaging , Adult , Aged , Ear, Inner/anatomy & histology , Ear, Inner/diagnostic imaging , Endolymph/diagnostic imaging , Female , Humans , Male , Middle Aged , Probability , Young Adult
15.
Eur Neuropsychopharmacol ; 26(3): 602-13, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26796681

ABSTRACT

Acetylcholinesterase inhibitors (AChEIs) are efficacious for the treatment of mild to moderate forms of Alzheimer's dementia (AD). Default-mode network (DMN) connectivity is considered to be early impaired in AD. Long-term effects of AChEIs on the DMN in AD have not yet been investigated. Twenty-eight AD patients and 11 age-matched healthy volunteers (HC) participated in the prospective study. AD patients were randomly assigned to either a pharmacotherapy arm (Galantamine, AD G) or to a placebo arm (AD P+G) for the period of 6 months followed by open-label Galantamine therapy from month 7-12. All subjects underwent neuropsychological testing, resting-state functional and structural MRI at baseline and after 12 months, AD patients additionally in between after 6 months. Thirteen AD patients completed the treatment trial and underwent all functional MRI follow-up sequences of good quality. Functional connectivity significantly increased within the AD G group in the posterior cingulate cortex and in the Precuneus between baseline and 12 months follow-up (pcorr<0.05). Between-group analyses demonstrated that functional connectivity in the AD G group significantly increased in the posterior cingulate cortex as well as in the Precuneus compared to the HC group and in the anteromedial aspect of the temporal lobes compared to the AD P+G group, respectively, at 12 months follow-up (pcorr<0.05). Cognitive performance remained stable within groups over time indicating that resting-state fMRI may be sensitive for the detection of pharmacologically induced effects on brain function of AD patients.


Subject(s)
Alzheimer Disease/drug therapy , Brain/drug effects , Galantamine/pharmacology , Galantamine/therapeutic use , Models, Neurological , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Oxygen/blood , Principal Component Analysis , Psychiatric Status Rating Scales , Rest , Time Factors
16.
Neurology ; 86(2): 134-40, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26659130

ABSTRACT

OBJECTIVE: To determine whether there are distinct thalamic regions statistically associated with either contraversive or ipsiversive disturbance of verticality perception measured by subjective visual vertical (SVV). METHODS: We used modern statistical lesion behavior mapping on a sample of 37 stroke patients with isolated thalamic lesions to clarify which thalamic regions are involved in graviceptive otolith processing and whether there are distinct regions associated with contraversive or ipsiversive SVV deviation. RESULTS: We found 2 distinct systems of graviceptive processing within the thalamus. Contraversive tilt of SVV was associated with lesions to the nuclei dorsomedialis, intralamellaris, centrales thalami, posterior thalami, ventrooralis internus, ventrointermedii, ventrocaudales and superior parts of the nuclei parafascicularis thalami. The regions associated with ipsiversive tilt of SVV were located in more inferior regions, involving structures such as the nuclei endymalis thalami, inferior parts of the nuclei parafascicularis thalami, and also small parts of the junction zone of the nuclei ruber tegmenti and brachium conjunctivum. CONCLUSIONS: Our data indicate that there are 2 anatomically distinct graviceptive signal processing mechanisms within the vestibular network in humans that lead, when damaged, to a vestibular tone imbalance either to the contraversive or to the ipsiversive side.


Subject(s)
Brain Mapping , Functional Laterality/physiology , Nerve Net/physiopathology , Space Perception/physiology , Thalamus/physiopathology , Vestibule, Labyrinth/physiopathology , Adult , Aged , Female , Humans , Male , Middle Aged , Stroke/diagnosis , Stroke/physiopathology
17.
PLoS One ; 10(7): e0133034, 2015.
Article in English | MEDLINE | ID: mdl-26204262

ABSTRACT

LITERATURE: One prominent symptom in addiction disorders is the strong desire to consume a particular substance or to display a certain behaviour (craving). Especially the strong association between craving and the probability of relapse emphasises the importance of craving in the therapeutic process. Neuroimaging studies have shown that craving is associated with increased responses, predominantly in fronto-striatal areas. AIM AND METHODS: The aim of the present study is the modification of craving-related neuronal responses in patients with alcohol addiction using fMRI real-time neurofeedback. For that purpose, patients with alcohol use disorder and healthy controls participated once in neurofeedback training; during the sessions neuronal activity within an individualized cortical region of interest (ROI) (anterior cingulate cortex, insula, dorsolateral prefrontal cortex) was evaluated. In addition, variations regarding the connectivity between brain regions were assessed in the resting state. RESULTS AND DISCUSSION: The results showed a significant reduction of neuronal activity in patients at the end of the training compared to the beginning, especially in the anterior cingulate cortex, the insula, the inferior temporal gyrus and the medial frontal gyrus. Furthermore, the results show that patients were able to regulate their neuronal activities in the ROI, whereas healthy subjects achieved no significant reduction. However, there was a wide variability regarding the effects of the training within the group of patients. After the neurofeedback-sessions, individual craving was slightly reduced compared to baseline. The results demonstrate that it seems feasible for patients with alcohol dependency to reduce their neuronal activity using rtfMRI neurofeedback. In addition, there is some evidence that craving can be influenced with the help of this technique. FUTURE PROSPECTS: In future, real-time fMRI might be a complementary neurophysiological-based strategy for the psychotherapy of patients with psychiatric or psychosomatic diseases. For that purpose, the stability of this effect and the generalizability needs to be assessed.


Subject(s)
Alcoholism/therapy , Cerebral Cortex/physiopathology , Craving/physiology , Functional Neuroimaging , Gyrus Cinguli/physiopathology , Magnetic Resonance Imaging , Neurofeedback/methods , Prefrontal Cortex/physiopathology , Adult , Alcoholism/physiopathology , Alcoholism/psychology , Computer Systems , Connectome , Cues , Female , Humans , Male , Young Adult
18.
PLoS One ; 8(6): e67329, 2013.
Article in English | MEDLINE | ID: mdl-23825652

ABSTRACT

Brain tissue changes in autism spectrum disorders seem to be rather subtle and widespread than anatomically distinct. Therefore a multimodal, whole brain imaging technique appears to be an appropriate approach to investigate whether alterations in white and gray matter integrity relate to consistent changes in functional resting state connectivity in individuals with high functioning autism (HFA). We applied diffusion tensor imaging (DTI), voxel-based morphometry (VBM) and resting state functional connectivity magnetic resonance imaging (fcMRI) to assess differences in brain structure and function between 12 individuals with HFA (mean age 35.5, SD 11.4, 9 male) and 12 healthy controls (mean age 33.3, SD 9.0, 8 male). Psychological measures of empathy and emotionality were obtained and correlated with the most significant DTI, VBM and fcMRI findings. We found three regions of convergent structural and functional differences between HFA participants and controls. The right temporo-parietal junction area and the left frontal lobe showed decreased fractional anisotropy (FA) values along with decreased functional connectivity and a trend towards decreased gray matter volume. The bilateral superior temporal gyrus displayed significantly decreased functional connectivity that was accompanied by the strongest trend of gray matter volume decrease in the temporal lobe of HFA individuals. FA decrease in the right temporo-parietal region was correlated with psychological measurements of decreased emotionality. In conclusion, our results indicate common sites of structural and functional alterations in higher order association cortex areas and may therefore provide multimodal imaging support to the long-standing hypothesis of autism as a disorder of impaired higher-order multisensory integration.


Subject(s)
Autistic Disorder/physiopathology , Brain/physiopathology , Adult , Autistic Disorder/diagnostic imaging , Brain/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Young Adult
19.
J Alzheimers Dis ; 34(3): 741-54, 2013.
Article in English | MEDLINE | ID: mdl-23271315

ABSTRACT

The investigation of cerebral resting-state networks (RSNs) by functional magnetic resonance imaging (fMRI) is a promising tool for the early diagnosis and follow-up of neuropsychiatric and neurodegenerative disorders like Alzheimer's disease (AD). In this context, the determination of inter-session reliability of these networks is crucial. However, data on network reliability in healthy elderly subjects is rare and does not exist for patients with amnestic mild cognitive impairment (aMCI), a prodromal stage of AD. Therefore, the aim of this study was to investigate the long-term test-retest reliability of RSNs in both groups. Twelve healthy controls (HC) and 13 aMCI patients underwent resting-state fMRI and neuropsychological testing (CERAD test battery) twice, at baseline and after 13-16 months. Resting-state fMRI data was decomposed into independent components using independent component analysis. Inter-session test-retest reliability of the resulting RSNs was determined by calculating voxel-wise intra-class correlation coefficients. Overall test-retest reliability of corresponding RSNs was moderate to high in both groups, but significantly higher in the HC group compared to the aMCI group (p < 0.001), while the cognitive performance within the CERAD test battery remained stable over time in either group. Most reliable RSNs derived from the HC group and were associated with sensory and motor as well as higher order cognitive and the default-mode function. Particularly low reliability was found in basal frontal regions, which are known to be prone to susceptibility-induced noise. We conclude that stable RSNs may represent healthy aging, whereas decreased RSN reliability may indicate progressive neuro-functional alterations before the actual manifestation of clinical symptoms.


Subject(s)
Amnesia/diagnosis , Amnesia/psychology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Neuropsychological Tests/standards , Aged , Aged, 80 and over , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Reproducibility of Results , Time Factors
20.
Neuroimage ; 71: 298-306, 2013 May 01.
Article in English | MEDLINE | ID: mdl-22906784

ABSTRACT

The vast majority of biological functions express rhythmic fluctuations across the 24-hour day. We investigated the degree of daily modulation across fMRI (functional Magnetic Resonance Imaging) derived resting-state data in 15 subjects by evaluating the time courses of 20 connectivity patterns over 8h (4 sessions). For each subject, we determined the chronotype, which describes the relationship between the individual circadian rhythm and the local time. We could therefore analyze the daily time course of the connectivity patterns controlling for internal time. Furthermore, as the participants' scan times were staggered as a function of their chronotype, we prevented sleep deprivation and kept time awake constant across subjects. Individual functional connectivity within each connectivity pattern was defined at each session as connectivity strength measured by a mean z-value and, in addition, as the spatial extent expressed by the number of activated voxels. Highly rhythmic connectivity patterns included two sub-systems of the Default-Mode Network (DMN) and a network extending over sensori-motor regions. The network characterized as the most stable across the day is mainly associated with processing of executive control. We conclude that the degree of daily modulation largely varies across fMRI derived resting-state connectivity patterns, ranging from highly rhythmic to stable. This finding should be considered when interpreting results from fMRI studies.


Subject(s)
Brain Mapping , Brain/physiology , Circadian Rhythm/physiology , Neural Pathways/physiology , Rest/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...