Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 81(6): 1260-1275.e12, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33561390

ABSTRACT

DNA methylation is implicated in neuronal biology via the protein MeCP2, the mutation of which causes Rett syndrome. MeCP2 recruits the NCOR1/2 co-repressor complexes to methylated cytosine in the CG dinucleotide, but also to sites of non-CG methylation, which are abundant in neurons. To test the biological significance of the dual-binding specificity of MeCP2, we replaced its DNA binding domain with an orthologous domain from MBD2, which can only bind mCG motifs. Knockin mice expressing the domain-swap protein displayed severe Rett-syndrome-like phenotypes, indicating that normal brain function requires the interaction of MeCP2 with sites of non-CG methylation, specifically mCAC. The results support the notion that the delayed onset of Rett syndrome is due to the simultaneous post-natal accumulation of mCAC and its reader MeCP2. Intriguingly, genes dysregulated in both Mecp2 null and domain-swap mice are implicated in other neurological disorders, potentially highlighting targets of relevance to the Rett syndrome phenotype.


Subject(s)
DNA Methylation , Methyl-CpG-Binding Protein 2/metabolism , Neurons/metabolism , Animals , CpG Islands , Gene Knock-In Techniques , HeLa Cells , Humans , Male , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Transgenic , Mutation , NIH 3T3 Cells , Neurons/pathology , Protein Domains , Rett Syndrome/genetics , Rett Syndrome/metabolism , Rett Syndrome/pathology
2.
Genomics ; 107(4): 109-19, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26945642

ABSTRACT

Current restriction enzyme based reduced representation methylation analyses aim for limited, but unbiased, methylome coverage. As the current best estimate suggests that only ~20% of CpGs are dynamically regulated, we characterised the CpG and genomic context surrounding all suitable restriction enzyme sites to identify those that were located in regions rich in dynamically methylated CpGs. The restriction-site distributions for MspI, BstUI, and HhaI were non-random. CpGs in CGI and shelf+shore could be enriched, particularly in gene bodies for all genomic regions, promoters (TSS1500, TSS200), intra- (1st exon, gene body, 3'UTR, 5'UTR) and inter-genic regions. HpyCH4IV enriched CpG elements in the open sea for all genomic elements. Judicious restriction enzyme choice improves the focus of reduced representation approaches by avoiding the monopolization of read coverage by genomic regions that are irrelevant, unwanted or difficult to map, and only sequencing the most informative fraction of CpGs.


Subject(s)
CpG Islands , DNA Methylation , DNA Restriction Enzymes/chemistry , Sequence Analysis, DNA/methods , 3' Untranslated Regions , 5' Untranslated Regions , Animals , Gene Library , Genomics/methods , Mice , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...