Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 280(1): H179-88, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11123232

ABSTRACT

Precise identification of infarcted myocardial tissue is of importance in diagnostic and interventional cardiology. A three-dimensional, catheter-based endocardial electromechanical mapping technique was used to assess the ability of local endocardial impedance in delineating the exact location, size, and border of canine myocardial infarction. Electromechanical mapping of the left ventricle was performed in a control group (n = 10) and 4 wk after left anterior descending coronary artery ligation (n = 10). Impedance, bipolar electrogram amplitude, and endocardial local shortening (LS) were quantified. The infarcted area was compared with the corresponding regions in controls, revealing a significant reduction in impedance values [infarcted vs. controls: 168.8 +/- 11. 7 and 240.7 +/- 22.3 Omega, respectively (means +/- SE), P < 0.05] bipolar electrogram amplitude (1.8 +/- 0.2 mV, 4.4 +/- 0.7 mV, P < 0. 05), and LS (-2.36 +/- 1.6%, 11.9 +/- 0.9%, P < 0.05). The accuracy of the impedance maps in delineating the location and extent of the infarcted region was demonstrated by the high correlation with the infarct area (Pearson's correlation coefficient = 0.942) and the accurate identification of the infarct borders in pathology. By accurately defining myocardial infarction and its borders, endocardial impedance mapping may become a clinically useful tool in differentiating healthy from necrotic myocardial tissue.


Subject(s)
Myocardial Infarction/pathology , Algorithms , Animals , Cardiography, Impedance/methods , Coronary Vessels , Dogs , Electrophysiology , Imaging, Three-Dimensional/methods , Ligation , Myocardial Contraction , Myocardial Infarction/physiopathology
2.
Circulation ; 98(19): 2055-64, 1998 Nov 10.
Article in English | MEDLINE | ID: mdl-9808605

ABSTRACT

BACKGROUND: Defining the presence, extent, and nature of the dysfunctional myocardial tissue remains a cornerstone in diagnostic cardiology. A nonfluoroscopic, catheter-based mapping technique that can spatially associate endocardial mechanical and electrical data was used to quantify electromechanical changes in the canine chronic infarction model. METHODS AND RESULTS: We mapped the left ventricular (LV) electromechanical regional properties in 11 dogs with chronic infarction (4 weeks after LAD ligation) and 6 controls. By sampling the location of a special catheter throughout the cardiac cycle at multiple endocardial sites and simultaneously recording local electrograms from the catheter tip, the dynamic 3-dimensional electromechanical map of the LV was reconstructed. Average endocardial local shortening (LS, measured at end systole and normalized to end diastole) and intracardiac bipolar electrogram amplitude were quantified at 13 LV regions. Endocardial LS was significantly lower at the infarcted area (1.2+/-0.9% [mean+/-SEM], P<0.01) compared with the noninfarcted regions (7.2+/-1.1% to 13. 5+/-1.5%) and with the same area in controls (15.5+/-1.2%, P<0.01). Average bipolar amplitude was also significantly lower at the infarcted zone (2.3+/-0.2 mV, P<0.01) compared with the same region in controls (10.3+/-1.3 mV) and with the noninfarcted regions (4. 0+/-0.7 to 10.2+/-1.5 mV, P<0.01) in the infarcted group. In addition, the electrical maps could accurately delineate both the location and extent of the infarct, as demonstrated by the high correlation with pathology (Pearson's correlation coefficient=0.90) and by the precise identification of the infarct border. CONCLUSIONS: Chronic myocardial infarcted tissue can be characterized and quantified by abnormal regional mechanical and electrical functions. The unique ability to assess the regional ventricular electromechanical properties in various myocardial disease states may become a powerful tool in both clinical and research cardiology.


Subject(s)
Myocardial Infarction/physiopathology , Animals , Biomechanical Phenomena , Chronic Disease , Coronary Disease/complications , Dogs , Electrophysiology , Myocardial Infarction/etiology , Myocardial Infarction/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...