Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
ACS Omega ; 7(51): 47869-47879, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36591132

ABSTRACT

This research effort aims to evaluate the hazardous potential of the redox state (OH-) of zero-valent iron nanoparticles (nZVI) and its histopathological and oxidative stress toward Mozambique tilapia, Oreochromis mossambicus. X-ray powder diffraction (XRD) validated the nZVI nanoparticles' chemical composition, while transmission electron microscopy (TEM) revealed that their physical form is round and oval. The exposure to 10 g/mL of nZVI induced the activation of the cellular superoxide dismutase (SOD) activity. Dose-dependent testing of O. mossambicus had a reduction in SOD and an increase in malondialdehyde (MDA) levels, suggesting that nZVI caused oxidative damage. At a concentration of 100 g/mL, the catalase (CAT) and peroxidase (POD) activities of diverse tissues exhibited a gradual decrease after 2 days of exposure and a fast increase until day 6. The scavenging of reactive oxygen species (ROS) in the epidermis, liver, and gills of O. mossambicus deteriorated and accumulated gradually. MDA levels in the skin, gill, and liver tissues were substantially higher after 8 days of exposure to 100 and 200 g/mL nZVI compared to those of the control group and those exposed to 10 and 50 g/mL nZVI for 2 days. Extreme histological and morphological abnormalities were seen in the skin, gill, and liver tissues of experimental animals, demonstrating that the damage resulted from direct contact with nZVI in water. A one-way ANOVA followed by Dunnett's post-test was performed to investigate significant differences.

2.
Exp Ther Med ; 14(1): 18-24, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28672888

ABSTRACT

The present study outlines the development of a method to synthesize copper nanoparticles (CuNPs) by mixing copper acetate solution with leaf extract of Eclipta prostrata without using any surfactant or external energy. E. prostrata leaf extract function as an excellent reducing agent of copper ions, and the biosynthesized CuNPs are safer for the environment. The powder X-ray diffraction (XRD) pattern provided evidence for the formation of face-centered cubic structure ranging from 23 to 57 nm, with an average size of 31±1.2 nm. Fourier transform infrared spectroscopy (FTIR) was used to identify the biomolecules and capping reagents in the E. prostrata leaf extract that may be responsible for the reduction of copper ions and the stability of the bioreduced nanoparticles. The biosynthesized CuNPs displayed considerable antioxidant capacity. Similarly, in vitro anticancer studies demonstrated the cytotoxicity value of synthesized CuNPs against tested HepG2 cells. The findings of the present study suggested that biosynthesized CuNPs that utilize extracts of E. prostrata may be used for therapeutic application, and thus are a promising nanomaterial.

3.
Parasitol Res ; 114(4): 1397-406, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25653029

ABSTRACT

Malaria is an infectious disease caused by the Plasmodium parasite that continues to be a health issue for humans. It is one of the most common pathogenic factors of morbidity and mortality. Palladium nanoparticles (Pd NPs) have been used as target antimicrobial compounds, as a catalyst to manufacture pharmaceuticals, degrade harmful environmental pollutants, and as sensors for the detection of various analyses. The aim of this study was to investigate the antiplasmodial activity of synthesized Pd NPs by using leaf aqueous extract of Eclipta prostrata against Plasmodium berghei in Swiss albino mice. The synthesized Pd NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Scanning electron microscopy (SEM) with Energy dispersive X-ray spectroscopy (EDX), and High-resolution transmission electron microscope (HRTEM) with the Selected area (electron) diffraction (SAED). The XRD peaks appeared at 35.61°, 44.27°, 56.40°, and 74.51°, which correspond to (111), (200), (220), and (311) planes for palladium, respectively. The FTIR spectra that were carried out to identify the potential biomolecule of synthesized Pd NPs showed the peaks at 3361, 1540, 1399, 1257, 1049, and 659 in the region of 4000-500 cm(-1). The SEM images showed aggregation of NPs with an average size of 63 ± 1.4. The HRTEM images of the precipitated solid phase obtained after termination of the reaction of E. prostrata aqueous leaf extract were in the range from 18 to 64 nm with an average size of 27 ± 1.3 nm. The in vivo antiplasmodial assay was carried out as per Peters' 4-day suppressive test, and the synthesized Pd NP-treated mice group showed reduction of parasitemia by 78.13% with an inhibitory concentration (IC)50 value of 16.44 mg/kg/body weight. The growth inhibition of E. prostrata aqueous leaf extract, palladium acetate, and synthesized Pd NPs showed the IC20, IC50, and IC90 values of 1.90, 10.29, and 64.11; 4.49, 9.84, and 23.04; and 4.34, 8.70, and 18.49 mg/kg/body weight, respectively against NK65 strain of P. berghei. In vitro cytotoxicity of the aqueous leaf extract of E. prostrata, palladium acetate, and Pd NPs that was evaluated against Hep-G2 cell lines showed the cellular toxicity of 7.5, 12, 22, 32, and 39%; 8.2, 18, 32, 55, and 66.2 %; and 8.5, 24, 48, 65, and 76.5% at 1, 10, 100, 250, and 500 µg/mL, respectively. This green chemistry approach toward the synthesis of Pd NPs has many advantages such as, ease with which the process can be scaled up, and economic viability.


Subject(s)
Antimalarials/administration & dosage , Eclipta/chemistry , Malaria/drug therapy , Metal Nanoparticles/chemistry , Palladium/chemistry , Plant Extracts/administration & dosage , Plasmodium berghei/drug effects , Animals , Antimalarials/chemistry , Humans , Malaria/parasitology , Male , Mice , Microscopy, Electron, Scanning , Plant Extracts/chemistry , Plant Leaves/chemistry , Spectrometry, X-Ray Emission , X-Ray Diffraction
4.
Nanomaterials (Basel) ; 5(3): 1317-1330, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-28347066

ABSTRACT

Cancer is a leading cause of death worldwide and sustained focus is on the discovery and development of newer and better tolerated anticancer drugs, especially from plants. In the present study, a simple, eco-friendly, and inexpensive approach was followed for the synthesis of zinc oxide nanoparticles (ZnO NPs) using the aqueous leaf extract of Eclipta prostrata. The synthesized ZnO NPs were characterized by UV-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), High-resolution transmission electron microscopy (HRTEM), and Selected area (electron) diffraction (SAED). The HRTEM images confirmed the presence of triangle, radial, hexagonal, rod, and rectangle, shaped with an average size of 29 ± 1.3 nm. The functional groups for synthesized ZnO NPs were 3852 cm-1 for H-H weak peak, 3138 cm-1 for aromatic C-H extend, and 1648 cm-1 for Aromatic ring stretch. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), caspase and DNA fragmentation assays were carried out using various concentrations of ZnO NPs ranging from 1 to 100 mg/mL. The synthesized ZnO NPs showed dose dependent cytopathic effects in the Hep-G2 cell line. At 100 mg/mL concentration, the synthesized ZnO NPs exhibited significant cytotoxic effects and the apoptotic features were confirmed through caspase-3 activation and DNA fragmentation assays.

5.
Asian Pac J Trop Med ; 7(12): 968-76, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25479626

ABSTRACT

OBJECTIVE: To determine the efficacies of antibacterial and antioxidant activities of aqueous leaf extract of Psidium guajava mediated biosynthesis of titanium dioxide nanoparticles (TiO2 NPs). METHODS: Synthesized TiO2 NPs were tested by disc diffusion method against against human pathogenic bacteria. The total antioxidant activity and phenolic content (Folin-Ciocalteau method) of synthesized TiO2 NPs and aqueous plant extract were determined. The scavenging radicals were estimated by DPPH method. The synthesized TiO2 NPs were characterized by XRD, FTIR, FESEM and EDX. RESULTS: FTIR spectra of synthesized TiO2 NPs exhibited prominent peaks at 3 410 cm(-1) (alkynes), 1 578 cm(-1), 1 451 cm(-1) (alkanes), and 1 123 cm(-1)(C-O absorption). The morphological characterization of synthesized TiO2 NPs was analysed by FESEM which showed spherical shape and clusters with an average size of 32.58 nm. The maximum zone of inhibition was observed in the synthesized TiO2 NPs (20 µg/mL) against Staphylococcus aureus (25 mm) and Escherichia coli (23 mm). The synthesized TiO2 NPs showed more antibacterial activity than the standard antibiotic disk, tetracycline which drastically reduces the chances for the development of antibiotics resistance of bacterial species. The plant aqueous extract and synthesized TiO2 NPs were found to possess maximum antioxidant activity when compared with ascorbic acid. The content of phenolic compounds (mg/g) in leaf aqueous extract and synthesized TiO2 NPs were found to be 85.4 and 18.3 mgTA/g, respectively. CONCLUSIONS: Green synthesized TiO2 NPs provides a promising approach can satisfy the requirement of large-scale industrial production bearing the advantage of low-cost, eco-friendly and reproducible.

6.
Parasitol Res ; 113(5): 1657-72, 2014 May.
Article in English | MEDLINE | ID: mdl-24638906

ABSTRACT

Malaria is an overwhelming impact in the poorest countries in the world due to their prevalence, virulence and drug resistance ability. Currently, there is inadequate armoury of drugs for the treatment of malaria. This underscores the continuing need for the discovery and development of new effective and safe antimalarial drugs. To evaluate the in vitro and in vivo antimalarial activity of the leaf ethyl acetate extract of Murraya koenigii, bioassay-guided chromatographic fractionation was employed for the isolation and purification of antimalarial compounds. The in vitro antimalarial activity was assayed by the erythrocytic stages of chloroquine-sensitive strain of Plasmodium falciparum (3D7) in culture using the fluorescence-based SYBR Green I assay. The in vivo assay was done by administering mice infected with Plasmodium berghei (NK65) four consecutive daily doses of the extracts through oral route following Peter's 4-day curative standard test. The percentage suppression of parasitaemia was calculated for each dose level by comparing the parasitaemia in untreated control with those of treated mice. Cytotoxicity was determined against HeLa cells using MTT assay. Histopathology was studied in kidney, liver and spleen of isolated compound-treated Swiss albino mice. The leaf crude ethyl acetate extract of M. koenigii showed good in vitro antiplasmodial activity against P. falciparum. The in vivo test of the leaf crude ethyl acetate extract (600 mg/kg) showed reduced malaria parasitaemia by 86.6% against P. berghei in mice. Bioassay-guided fractionation of the leaf ethyl acetate extract of M. koenigii led to the isolation of two purified fractions C3B2 (2.84 g) and C3B4 (1.97 g). The purified fractions C3B2 and C3B4 were found to be active with IC50 values of 10.5 ± 0.8 and 8.25 ± 0.2 µg/mL against P. falciparum, and in vivo activity significantly reduced parasitaemia by 82.6 and 88.2% at 100 mg/kg/body weight on day 4 against P. berghei, respectively. The isolated fractions C3B2 and C3B4 were monitored by thin-layer chromatography until a single spot was obtained with R f values of 0.36 and 0.52, respectively. The pure compounds obtained in the present investigation were subjected to UV-visible spectroscopy, Fourier transformer infrared spectroscopy, 1D and 2D (1)H-Nuclear magnetic resonance (NMR), (13)C NMR, DEPT, COSY and Mass spectral analysis. Based on the spectral analysis, it is concluded that the isolated compounds were myristic acid (C3B2) and ß-caryophyllene (C3B4). The cytotoxic effect of myristic acid and ß-caryophyllene showed the TC50 values of >100 and 80.5 µg/mL, respectively against HeLa cell line. The histopathology study showed that protection against nephrotoxicity of kidney, hepatic damage of liver and splenocytes protection in spleen was achieved with the highest dose tested at 100 mg/kg/body weight. The present study provides evidence of antiplasmodial compounds from M. koenigii and is reported for the first time.


Subject(s)
Antimalarials/pharmacology , Murraya/chemistry , Plant Extracts/pharmacology , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemistry , Female , HeLa Cells , Humans , Malaria/drug therapy , Male , Mice , Myristic Acid/isolation & purification , Plant Extracts/chemistry , Plant Leaves/chemistry , Polycyclic Sesquiterpenes , Sesquiterpenes/isolation & purification
7.
Bioprocess Biosyst Eng ; 37(8): 1591-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24525832

ABSTRACT

In the present study, we report rapid biological synthesis of gold nanoparticles (Au NPs) using a novel marine brown alga Ecklonia cava (Family: Lessoniaceae) by the reduction of chloroauric acid. The formation of Au NPs reaction was complete within 1 min at 80 °C and physiochemically characterized with different analytical techniques. FTIR spectroscopy revealed that Au NPs were functionalized with biomolecules that have primary amine group, hydroxyl group and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face-centered cubic structure of Au NPs. Microscopy results showed that these Au NPs are formed with shapes like spherical and triangular with an average size of 30 ± 0.25 nm. Synthesized Au NPs showed good antimicrobial and biocompatibility with human keratinocyte cell line. Thus, physiochemical characteristic results suggest that Au NPs will have promising biomedical applications in different area such as drug delivery, tissue engineering, biosensor, etc.


Subject(s)
Chlorides/chemistry , Gold Compounds/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Humans , Oxidation-Reduction , Particle Size , Phaeophyceae
8.
Parasitol Res ; 113(2): 469-79, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24265057

ABSTRACT

Titanium dioxide nanoparticles (TiO2 NPs) are widely used in paints, printing ink, rubber, paper, cosmetics, sunscreens, car materials, cleaning air products, industrial photocatalytic processes, and decomposing organic matters in wastewater due to their unique physical, chemical, and biological properties. The present study was conducted to assess the antiparasitic efficacies of synthesized TiO2 NPs utilizing leaf aqueous extract of Solanum trilobatum against the adult head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae); larvae of cattle tick Hyalomma anatolicum (a.) anatolicum Koch (Acari: Ixodidae), and fourth instar larvae of malaria vector Anopheles subpictus Grassi (Diptera: Culicidae). The green synthesized TiO2 NPs were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy analysis (EDX), and Atomic force microscopy (AFM). XRD analysis of synthesized TiO2 NPs revealed that the particles were in the form of nanocrystals as evidenced by the major peaks at 2θ values of 27.52°, 36.21°, and 54.43° identified as 110, 101, and 211 reflections, respectively. FTIR spectra exhibited a prominent peak at 3,466 cm(-1) and showed OH stretching due to the alcoholic group, and the OH group may act as a capping agent. SEM images displayed NPs that were spherical, oval in shape, individual, and some in aggregates with an average size of 70 nm. Characterization of the synthesized TiO2 NPs using AFM offered a three-dimensional visualization and uneven surface morphology. The pediculocidal and acaricidal activities of synthesized TiO2 NPs showed the percent mortality of 31, 42, 63, 82, 100; 36, 44, 67, 89, and 100 at 2, 4, 6, 8, and 10 mg/L, respectively, against P. h. capitis and H. a. anatolicum. The average larval percent mortality of synthesized TiO2 NPs was 38, 47, 66, 79, and 100 at 1, 2, 3, 4, and 5 mg/L, respectively, against A. subpictus. The maximum activity was observed in the aqueous leaf extract of S. trilobatum, TiO(OH)2 solutions (bulk), and synthesized TiO2 NPs with LC50 values of 35.14, 25.85, and 4.34 mg/L; 47.15, 29.78, and 4.11 mg/L; and 28.80, 24.01, and 1.94 mg/L, and r (2) values of 0.982, 0.991, and 0.992; 0.947, 0.987, and 0.997; and 0.965, 0.998 and 0.985, respectively, against P. h. capitis, H. a. anatolicum, and A. subpictus. This study provides the first report on the pediculocidal, acaricidal, and larvicidal activity of synthesized TiO2 NPs. This is an ideal eco-friendly, novel, low-cost, and simple approach to satisfy the requirement of large-scale industrial production bearing the advantage for the control of P. h. capitis, H. a. anatolicum, and A. subpictus.


Subject(s)
Anopheles/drug effects , Ixodidae/drug effects , Metal Nanoparticles , Pediculus/drug effects , Plant Extracts/metabolism , Solanum/chemistry , Titanium/pharmacology , Acaricides/pharmacology , Animals , Cattle , Humans , Insecticides/pharmacology , Larva/drug effects , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Scanning , Parasitic Sensitivity Tests , Plant Leaves/chemistry , Spectrometry, X-Ray Emission , X-Ray Diffraction
9.
Parasitol Res ; 112(11): 3951-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24013340

ABSTRACT

A novel approach to control strategies for integrated blood-feeding parasite management is in high demand, including the use of biological control agents. The present study aims to determine the efficacy of optimized crude extract of actinomycetes strain LK1 as biological control agent against the fourth-instar larvae of Anopheles stephensi and Culex tritaeniorhynchus (Diptera: Culicidae) and adults of Haemaphysalis bispinosa, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae), and Hippobosca maculata (Diptera: Hippoboscidae). Antiparasitic activity was optimized using the Plackett-Burman method, and the design was developed using the software Design-Expert version 8.0.7.1. The production of the optimized crude actinomycetes LK1 strain extract was performed using response surface methodology to optimize the process parameters of protease inhibitor activity of marine actinobacteria for the independent variables like pH, temperature, glucose, casein, and NaCl at two levels (-1 and +1). The potential actinomycetes strain was identified as Saccharomonas spp., and the metamodeling surface simulation procedure was followed. It was studied using a computer-generated experimental design, automatic control of simulation experiments, and sequential optimization of the metamodels fitted to a simulation response surface function. The central composite design (CCD) used for the analysis of treatment showed that a second-order polynomial regression model was in good agreement with the experimental results at R (2) = 0.9829 (p < 0.05). The optimized values of the variables for antioxidant production were pH 6.00, glucose 1.3%, casein 0.09%, temperature 31.23 °C, and NaCl 0.10%. The LK1 strain-optimized crude extract was purified using reversed-phase high-pressure liquid chromatography, and the isolated protease inhibitor showed antiparasitic activity. The antiparasitic activity of optimized crude extract of LK1 was tested against larvae of A. stephensi (LC50 = 31.82 ppm; r(2) = 0.818) and C. tritaeniorhynchus (LC50 = 26.62 ppm; r(2) = 0.790) and adults of H. bispinosa (LC50 = 106.58 ppm; r(2) = 0.871), R. (B.) microplus (LC50 = 92.96 ppm; r(2) = 0.913), and H. maculata (LC50 = 84.90 ppm; r(2) = 0.857).


Subject(s)
Actinobacteria/isolation & purification , Actinobacteria/physiology , Antibiosis , Diptera/microbiology , Ixodidae/microbiology , Pest Control, Biological/methods , Actinobacteria/chemistry , Animals , Aquatic Organisms/growth & development , Aquatic Organisms/isolation & purification , Diptera/physiology , Insecticides/isolation & purification , Insecticides/pharmacology , Ixodidae/physiology , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Survival Analysis
10.
Parasitol Res ; 112(12): 4105-12, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24013343

ABSTRACT

The developments of resistance and persistence to chemical insecticides and concerns about the non-target effects have prompted the development of eco-friendly mosquito control agents. The aim of this study was to investigate the larvicidal activities of synthesized cobalt nanoparticles (Co NPs) using bio control agent, Bacillus thuringiensis against malaria vector, Anopheles subpictus and dengue vector, Aedes aegypti (Diptera: Culicidae). The synthesized Co NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field-emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy, and Transmission electron microscopy (TEM). XRD analysis showed three distinct diffraction peaks at 27.03°, 31.00°, and 45.58° indexed to the planes 102, 122, and 024, respectively on the face-centered cubic cobalt acetate with an average size of 85.3 nm. FTIR spectra implicated role of the peak at 3,436 cm(-1) for O-H hydroxyl group, 2924 cm(-1) for methylene C-H stretch in the formation of Co NPs. FESEM analysis showed the topological and morphological appearance of NPs which were found to be spherical and oval in shape. TEM analysis showed polydispersed and clustered NPs with an average size of 84.81 nm. The maximum larvicidal mortality was observed in the cobalt acetate solution, B. thuringiensis formulation, and synthesized Co NPs against fourth instar larvae of A. subpictus and A. aegypti with LC50 values of 29.16, 8.12, 3.59 mg/L; 34.61, 6.94, and 2.87 mg/L; r (2) values of 0.986, 0.933, 0.942; 0.962, 0.957, and 0.922, respectively.


Subject(s)
Bacillus thuringiensis/metabolism , Cobalt/chemistry , Insecticides/chemistry , Metal Nanoparticles/chemistry , Mosquito Control , Aedes , Animals , Anopheles , Cobalt/pharmacology , Culicidae/drug effects , Insect Vectors/drug effects , Insecticides/pharmacology , Larva/drug effects
11.
Asian Pac J Trop Med ; 6(9): 682-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23827143

ABSTRACT

OBJECTIVE: To assess the acaricidal activity of titanium dioxide nanoparticles (TiO2 NPs) synthesized from flower aqueous extract of Calotropis gigantea(C. gigantea) against the larvae of Rhipicephalus (Boophilus) microplus [R. (B.) microplus] and the adult of Haemaphysalis bispinosa (H. bispinosa). METHODS: The lyophilized C. gigantea flower aqueous extract of 50 mg was added with 100 mL of TiO(OH)2 (10 mM) and magnetically stirred for 6 h. Synthesized TiO2 NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and Energy dispersive X-ray spectroscopy (EDX). The synthesised TiO2 NPs were tested against the larvae of R. (B.) microplus and adult of H. bispinosa were exposed to filter paper impregnated method. RESULTS: XRD confirmed the crystalline nature of the nanoparticles with the mean size of 10.52 nm. The functional groups for synthesized TiO2 NPs were 1 405.19, and 1 053.45 cm(-1) for -NH2 bending, primary amines and amides and 1 053.84 and 1 078.45 cm(-1) for C-O. SEM micrographs of the synthesized TiO2 NPs showed the aggregated and spherical in shape. The maximum efficacy was observed in the aqueous flower extract of C. gigantea and synthesized TiO2 NPs against R. (B.) microplus (LC50=24.63 and 5.43 mg/L and r(2)=0.960 and 0.988) and against H. bispinosa (LC50= 35.22 and 9.15 mg/L and r(2) = 0.969 and 0.969), respectively. CONCLUSIONS: The synthesized TiO2 NPs were highly stable and had significant acaricidal activity against the larvae of R. (B.) microplus and adult of H. bispinosa. This study provides the first report of synthesized TiO2 NPs and possessed excellent anti-parasitic activity.


Subject(s)
Acaricides/pharmacology , Calotropis/chemistry , Ixodidae/drug effects , Metal Nanoparticles/chemistry , Plant Extracts/pharmacology , Rhipicephalus/drug effects , Titanium/pharmacology , Acaricides/chemical synthesis , Acaricides/chemistry , Animals , Female , Flowers/chemistry , Ixodidae/growth & development , Male , Particle Size , Plant Extracts/chemistry , Rhipicephalus/growth & development , Titanium/chemistry
12.
Article in English | MEDLINE | ID: mdl-23416912

ABSTRACT

Nanosized materials have been an important subject in basic and applied sciences. A novel, low-cost, green and reproducible bacteria, Aeromonas hydrophila mediated biosynthesis of titanium dioxide nanoparticles (TiO2 NPs) was reported. The resulting nanoparticles were characterized by FTIR, XRD, AFM and FESEM with EDX. FTIR showed characteristic bands (1643 and 3430 cm(-1)) finds the role of carboxyl group OH stretching amine NH stretch in the formation of TiO2 NPs. The XRD spectrum confirmed that the synthesized TiO2 NPs were in the form of nanocrystals, as evidenced by the peaks at 2θ values of 27.47°, 31.77°, 36.11°, 41.25°, 54.39°, 56.64° and 69.54° were identified as 110, 100, 101, 111, 211, 220 and 301 reflections, respectively. The crystallite sizes were calculated using Scherrer's formula applied to the major intense peaks and found to be the size of 40.50 nm. The morphological characterization was analyzed by FESEM and the analysis showed the NPs smooth shaped, spherical and uneven. GC-MS analysis showed the main compounds found in A. hydrophila were uric acid (2.95%), glycyl-L-glutamic acid (6.90%), glycyl-L-proline (74.41%) and L-Leucyl-D-leucine (15.74%). The potential glycyl-L-proline could have played an important role as a capping agent. A possible mechanism for the biosynthesis of TiO2 NPs has been proposed. The antibacterial activity of the synthesized TiO2 NPs was assessed by well diffusion method toward A. hydrophila, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis and showed effective inhibitory activity against S. aureus (33 mm) and S. pyogenes (31 mm).


Subject(s)
Aeromonas hydrophila/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Green Chemistry Technology/methods , Nanoparticles/chemistry , Titanium/chemistry , Titanium/pharmacology , Aeromonas hydrophila/metabolism , Anti-Bacterial Agents/metabolism , Bacteria/drug effects , Bacterial Infections/drug therapy , Dipeptides/chemistry , Dipeptides/metabolism , Humans , Nanoparticles/ultrastructure , Spectroscopy, Fourier Transform Infrared , Titanium/metabolism , X-Ray Diffraction
13.
Vet Parasitol ; 191(3-4): 332-9, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23040768

ABSTRACT

The present study was on assessment of the anti-parasitic activities of nickel nanoparticles (Ni NPs) against the larvae of cattle ticks Rhipicephalus (Boophilus) microplus and Hyalomma anatolicum (a.) anatolicum (Acari: Ixodidae), fourth instar larvae of Anopheles subpictus, Culex quinquefasciatus and Culex gelidus (Diptera: Culicidae). The metallic Ni NPs were synthesized by polyol process from Ni-hydrazine as precursor and Tween 80 as both the medium and the stabilizing reagent. The synthesized Ni NPs were characterized by Fourier transform infrared (FTIR) spectroscopy analysis which indicated the presence of Ni NPs. Synthesized Ni NPs showed the X-ray diffraction (XRD) peaks at 42.76°, 53.40°, and 76.44°, identified as 111, 220, and 200 reflections, respectively. Scanning electron microscopy (SEM) analysis of the synthesized Ni NPs clearly showed that the Ni NPs were spherical in shape with an average size of 150 nm. The Ni NPs showed maximum activity against the larvae of R. (B.) microplus, H. a. anatolicum, A. subpictus, C. quinquefasciatus and C. gelidus with LC(50) values of 10.17, 10.81, 4.93, 5.56 and 4.94 mg/L; r(2) values of 0.990, 0.993, 0.992, 0.950 and 0.988 and the efficacy of Ni-hydrazine complexes showed the LC(50) values of 20.35, 22.72, 8.29, 9.69 and 7.83 mg/L; r(2) values of 0.988, 0.986, 0.989, 0.944 and 0.978, respectively. The findings revealed that synthesized Ni NPs possess excellent larvicidal parasitic activity. To the best of our knowledge, this is the first report on larvicidal activity of blood feeding parasites using synthesized Ni NPs.


Subject(s)
Antiparasitic Agents/pharmacology , Culicidae/drug effects , Ixodidae/drug effects , Metal Nanoparticles , Nickel/pharmacology , Animals , Larva/drug effects , Metal Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared
14.
Exp Parasitol ; 132(2): 156-65, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22750410

ABSTRACT

The present study was to determine the efficacies of anti-parasitic activities of synthesized silver nanoparticles (Ag NPs) using stem aqueous extract of Cissus quadrangularis against the adult of hematophagous fly, Hippobosca maculata (Diptera: Hippoboscidae), and the larvae of cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Contact toxicity method was followed to determine the potential of parasitic activity. Twelve milliliters of stem aqueous extract of C. quadrangularis was treated with 88 ml of 1mM silver nitrate (AgNO(3)) solution at room temperature for 30 min and the resulting solution was yellow-brown color indicating the formation extracellular synthesis of Ag NPs. The synthesized Ag NPs were characterized with UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscope (FESEM) and energy dispersive X-ray (EDX) spectroscopy. The synthesized Ag NPs were recorded by UV-visible spectrum at 420 nm and XRD patterns showed the nanoparticles crystalline in nature. FTIR analysis confirmed that the bioreduction of Ag((+)) ions to Ag NPs were due to the reduction by capping material of plant extract. FESEM image of Ag NPs showed spherical and oval in shape. By using the Bragg's Law and Scherrer's constant, the average mean size of synthesized Ag NPs was 42.46 nm. The spot EDX analysis showed the complete chemical composition of the synthesized Ag NPs. The mortality obtained by the synthesized Ag NPs from the C. quadrangularis was more effective than the aqueous extract of C. quadrangularis and AgNO(3) solution (1 mM). The adulticidal activity was observed in the aqueous extract, AgNO(3) solution and synthesized Ag NPs against the adult of H. maculata with LC(50) values of 37.08, 40.35 and 6.30 mg/L; LC(90) values of 175.46, 192.17 and 18.14 mg/L and r(2) values of 0.970, 0.992 and 0.969, respectively. The maximum efficacy showed in the aqueous extract, AgNO(3) solution and synthesized Ag NPs against the larvae of R. (B.) microplus with LC(50) values of 50.00, 21.72 and 7.61 mg/L; LC(90) values of 205.12, 82.99 and 22.68 mg/L and r(2) values of 0.968, 0.945 and 0.994, respectively. The present study is the first report on antiparasitic activity of the experimental plant extract and synthesized Ag NPs. This is an ideal eco-friendly and inexpensive approach for the control of H. maculata and R. (B.) microplus.


Subject(s)
Cissus/chemistry , Diptera/drug effects , Plant Extracts/pharmacology , Rhipicephalus/drug effects , Animals , Biological Assay , Cattle , Cattle Diseases/drug therapy , Cattle Diseases/parasitology , Ectoparasitic Infestations/drug therapy , Ectoparasitic Infestations/veterinary , Female , Larva/drug effects , Lethal Dose 50 , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning/methods , Plant Extracts/therapeutic use , Plant Stems/chemistry , Silver , Silver Nitrate , Solutions , Spectrometry, X-Ray Emission , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Tick Infestations/drug therapy , Tick Infestations/veterinary , X-Ray Diffraction
15.
J Ethnopharmacol ; 141(3): 796-802, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22433533

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: An ethnopharmacological investigation of medicinal plants traditionally used to treat diseases associated with fevers in Dharmapuri region of South India was undertaken. Twenty four plants were identified and evaluated for their in vitro activity against Plasmodium falciparum and assessed for cytotoxicity against HeLa cell line. AIM OF THE STUDY: This antimalarial in vitro study was planned to correlate and validate the traditional usage of medicinal plants against malaria. MATERIALS AND METHODS: An ethnobotanical survey was made in Dharmapuri region, Tamil Nadu, India to identify plants used in traditional medicine against fevers. Selected plants were extracted with ethyl acetate and methanol and evaluated for antimalarial activity against erythrocytic stages of chloroquine (CQ)-sensitive 3D7 and CQ-resistant INDO strains of Plasmodium falciparum in culture using the fluorescence-based SYBR Green I assay. Cytotoxicity was determined against HeLa cells using MTT assay. RESULTS: Promising antiplasmodial activity was found in Aegle marmelos [leaf methanol extract (ME) (IC(50)=7 µg/mL] and good activities were found in Lantana camara [leaf ethyl acetate extract (EAE) IC(50)=19 µg/mL], Leucas aspera (flower EAE IC(50)=12.5 µg/mL), Momordica charantia (leaf EAE IC(50)=17.5 µg/mL), Phyllanthus amarus (leaf ME IC(50)=15 µg/mL) and Piper nigrum (seed EAE IC(50)=12.5 µg/mL). The leaf ME of Aegle marmelos which showed the highest activity against Plasmodium falciparum elicited low cytotoxicity (therapeutic index>13). CONCLUSION: These results provide validation for the traditional usage of some medicinal plants against malaria in Dharmapuri region, Tamil Nadu, India.


Subject(s)
Antimalarials/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal , Plasmodium falciparum/drug effects , Cell Survival/drug effects , Female , HeLa Cells , Health Surveys , Humans , India , Male , Medicine, Traditional , Middle Aged
16.
Parasitol Res ; 111(6): 2329-37, 2012 Dec.
Article in English | MEDLINE | ID: mdl-21987105

ABSTRACT

The purpose of the present study was based on assessments of the antiparasitic activities of synthesized titanium dioxide nanoparticles (TiO(2) NPs) utilizing leaf aqueous extract of Catharanthus roseus against the adults of hematophagous fly, Hippobosca maculata Leach (Diptera: Hippoboscidae), and sheep-biting louse, Bovicola ovis Schrank (Phthiraptera: Trichodectidae). The synthesized TiO(2) NPs were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The formation of the TiO(2) NPs synthesized from the XRD spectrum compared with the standard confirmed spectrum of titanium particles formed in the present experiments were in the form of nanocrystals, as evidenced by the peaks at 2θ values of 27.43°, 36.03°, and 54.32°. The FTIR spectra of TiO(2) NPs exhibited prominent peaks at 714 (Ti-O-O bond), 1,076 (C-N stretch aliphatic amines), 1,172 (C-O stretching vibrations in alcoholic groups), 1,642 (N-H bend bond), and 3,426 (O-H stretching due to alcoholic group). SEM analysis of the synthesized TiO(2) NPs clearly showed the clustered and irregular shapes, mostly aggregated and having the size of 25-110 nm. By Bragg's law and Scherrer's constant, it is proved that the mean size of synthesized TiO(2) NPs was 65 nm. The AFM obviously depicts the formation of the rutile and anatase forms in the TiO(2) NPs and also, the surface morphology of the particles is uneven due to the presence of some of the aggregates and individual particles. Adulticidal parasitic activity was observed in varying concentrations of aqueous leaf extract of C. roseus, TiO(2) solution, and synthesized TiO(2) NPs for 24 h. The maximum parasitic activity was observed in aqueous crude leaf extracts of C. roseus against the adults of H. maculata and B. ovis with LD(50) values of 36.17 and 30.35 mg/L, and r (2) values of 0.948 and 0.908, respectively. The highest efficacy was reported in 5 mM TiO(2) solution against H. maculata and B. ovis (LD(50) = 33.40 and 34.74 mg/L; r (2) = 0.786 and 0.873), respectively, and the maximum activity was observed in the synthesized TiO(2) NPs against H. maculata and B. ovis with LD(50) values of LD(50) = 7.09 and 6.56 mg/L, and r (2) values of 0.880 and 0.913, respectively. This method is considered as an innovative alternative approach to control the hematophagous fly and sheep-biting louse.


Subject(s)
Catharanthus/metabolism , Diptera/drug effects , Insecticides/metabolism , Ischnocera/drug effects , Nanoparticles , Plant Extracts/metabolism , Titanium/metabolism , Animals , Biological Assay , Insecticides/chemistry , Insecticides/pharmacology , Lethal Dose 50 , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Plant Leaves/metabolism , Spectroscopy, Fourier Transform Infrared , Survival Analysis , Titanium/chemistry , Titanium/pharmacology , X-Ray Diffraction
17.
Parasitol Res ; 111(2): 921-33, 2012 Aug.
Article in English | MEDLINE | ID: mdl-21638210

ABSTRACT

The purpose of the present study was to investigate the acaricidal and larvicidal activity against the larvae of Haemaphysalis bispinosa Neumann (Acarina: Ixodidae) and larvae of hematophagous fly Hippobosca maculata Leach (Diptera: Hippoboscidae) and against the fourth-instar larvae of malaria vector, Anopheles stephensi Liston, Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae) of synthesized silver nanoparticles (AgNPs) utilizing aqueous leaf extract from Musa paradisiaca L. (Musaceae). The color of the extract changed to light brown within an hour, and later it changed to dark brown during the 30-min incubation period. AgNPs results were recorded from UV-vis spectrum at 426 nm; Fourier transform infrared (FTIR) analysis confirmed that the bioreduction of Ag(+) ions to silver nanoparticles are due to the reduction by capping material of plant extract, X-ray diffraction (XRD) patterns clearly illustrates that the nanoparticles formed in the present synthesis are crystalline in nature and scanning electron microscopy (SEM) support the biosynthesis and characterization of AgNPs with rod in shape and size of 60-150 nm. After reaction, the XRD pattern of AgNPs showed diffraction peaks at 2θ = 34.37°, 38.01°, 44.17°, 66.34° and 77.29° assigned to the (100), (111), (102), (110) and (120) planes, respectively, of a faced centre cubic (fcc) lattice of silver were obtained. For electron microscopic studies, a 25 µl sample was sputter-coated on copper stub, and the images of nanoparticles were studied using scanning electron microscopy. The spot EDX analysis showed the complete chemical composition of the synthesized AgNPs. The parasite larvae were exposed to varying concentrations of aqueous extract of M. paradisiaca and synthesized AgNPs for 24 h. In the present study, the percent mortality of aqueous extract of M. paradisiaca were 82, 71, 46, 29, 11 and 78, 66, 38, 31and 16 observed in the concentrations of 50, 40, 30, 20, 10 mg/l for 24 h against the larvae of H. bispinosa and Hip. maculata, respectively. The maximum efficacy was observed in the aqueous extract of M. paradisiaca against the H. bispinosa, Hip. maculata, and the larvae of A. stephensi, C. tritaeniorhynchus with LC(50) values of 28.96, 31.02, 26.32, and 20.10 mg/lm, respectively (r (2) = 0.990, 0.968, 0.974, and 0.979, respectively). The synthesized AgNPs of M. paradisiaca showed the LC(50) and r (2) values against H. bispinosa, (1.87 mg/l; 0.963), Hip. maculata (2.02 mg/l; 0.976), and larvae of A. stephensi (1.39; 0.900 mg/l), against C. tritaeniorhynchus (1.63 mg/l; 0.951), respectively. The χ (2) values were significant at p < 0.05 level.


Subject(s)
Acaricides/pharmacology , Insecta/drug effects , Ixodidae/drug effects , Metal Nanoparticles/chemistry , Musa/metabolism , Silver/pharmacology , Acaricides/chemistry , Animals , Fruit , Larva/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Silver/chemistry
18.
Parasitol Res ; 111(5): 2023-33, 2012 Nov.
Article in English | MEDLINE | ID: mdl-21993881

ABSTRACT

In the present work, we describe inexpensive, nontoxic, unreported and simple procedure for synthesis of silver nanoparticles (Ag NPs) using leaf aqueous extract of Lawsonia inermis as eco-friendly reducing and capping agent. The aim of the present study was to assess the lousicidal activity of synthesized Ag NPs against human head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae), and sheep body louse, Bovicola ovis Schrank (Phthiraptera: Trichodectidae). Direct contact method was conducted to determine the potential of pediculocidal activity and impregnated method was used with slight modifications to improve practicality and efficiency of tested materials of synthesized Ag NPs against B. ovis. The synthesized Ag NPs characterized with the UV showing peak at 426 nm. X-ray diffraction (XRD) spectra clearly shows that the diffraction peaks in the pattern indexed as the silver with lattice constants. XRD analysis showed intense peaks at 2θ values of 38.34°, 44.59°, 65.04°, and 77.77° corresponding to (111), (200), (220), and (311) Bragg's reflection based on the fcc structure of Ag NPs. Fourier transform infrared spectroscopy (FTIR) spectra of Ag NPs exhibited prominent peaks at 3,422.13, 2,924.12, 2,851.76, 1,631.41, 1,381.60, 1,087.11, and 789.55 cm(-1). Scanning electron microscopy (SEM) micrograph showed mean size of 59.52 nm and aggregates of spherical shape Ag NPs. Energy dispersive X-ray spectroscopy (EDX) showed the complete chemical composition of the synthesized Ag NPs. In pediculocidal activity, the results showed that the optimal times for measuring percent mortality effects of synthesized Ag NPs were 26, 61, 84, and 100 at 5, 10, 15, and 20 min, respectively. The average percent mortality for synthesized Ag NPs was 33, 84, 91, and 100 at 10, 15, 20, and 35 min, respectively against B. ovis. The maximum activity was observed in the aqueous leaf extract of L. inermis, 1 mM AgNO(3) solution, and synthesized Ag NPs against P. humanus capitis with LC(50) values of 18.26, 7.77, and 1.33 mg l(-1) and r (2) values of 0.863, 0.900, and 0.803 and against B. ovis showed with LC(50) values of 21.19, 8.49, and 1.41 mg l(-1) and r (2) values of 0.920, 0.938 and 0.870, respectively. The findings revealed that synthesized Ag NPs possess excellent anti-lousicidal activity.


Subject(s)
Insecticides/pharmacology , Ischnocera/drug effects , Lawsonia Plant/metabolism , Nanoparticles , Pediculus/drug effects , Silver/pharmacology , Animals , Insecticides/isolation & purification , Microscopy, Electron, Scanning , Parasitic Sensitivity Tests , Plant Extracts/metabolism , Plant Leaves/metabolism , Silver/chemistry , Silver/metabolism , Spectrometry, X-Ray Emission , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Survival Analysis , X-Ray Diffraction
19.
Parasitol Res ; 111(4): 1833-40, 2012 Oct.
Article in English | MEDLINE | ID: mdl-21861064

ABSTRACT

The aim of the present study was to investigate the adulticidal and larvicidal activity of dried leaf hexane, ethyl acetate, acetone, and methanol extracts of Nelumbo nucifera, Manilkara zapota, Ipomoea staphylina, and Acalypha indica against the adults of Haemaphysalis bispinosa (Acarina: Ixodidae), hematophagous fly Hippobosca maculata (Diptera: Hippoboscidae), and fourth instar larvae of malaria vector Anopheles subpictus (Diptera: Culicidae). Parasites were exposed to varying concentrations of plant extracts for 24 h. All extracts showed moderate parasitic effects; however, the percent parasitic mortality observed in the crude leaf hexane, ethyl acetate, acetone, and methanol extracts of N. nucifera and M. zapota against H. bispinosa were 80, 74, 72, and 100 and 100, 83, 74, and 91, respectively, and the activity for I. staphylina and A. indica against Hip. maculata were 100, 93, 87, and 66 and 78, 90, 87, and 100 at 2,000 ppm, respectively; the larvicidal activity for the same extracts of I. staphylina against A. subpictus were 76, 82, 84, and 100 at 100 ppm, respectively. The maximum efficacy was observed in the leaf methanol extract of N. nucifera, hexane extract of M. zapota and leaf hexane extract of I. staphylina, and methanol extract of A. indica against the adults of H. bispinosa and Hip. maculata with LC(50) and LC(90) values of 437.14 and 200.81, and 415.14 and 280.72 ppm, 1,927.57 and 703.52 ppm, and 1,647.70 and 829.39 ppm, respectively. The effective larvicidal activity was observed in leaf methanol extract of I. staphylina against A. subpictus with LC(50) and LC(90) values of 10.39 and 37.71 ppm, respectively. Therefore, this study provides the first report on the adulticidal and larvicidal activity of crude solvent extracts. This is an ideal eco-friendly approach for the control of H. bispinosa, Hip. maculata, and the medically important vector A. subpictus.


Subject(s)
Diptera/drug effects , Ferns/chemistry , Insecticides/pharmacology , Ixodidae/drug effects , Plant Extracts/pharmacology , Animals , Insecticides/isolation & purification , Larva/drug effects , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Survival Analysis
20.
Parasitol Res ; 109(5): 1403-15, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21526405

ABSTRACT

The present study was based on assessments of the anti-parasitic activities of the hematophagous (blood feeding) larvae of malaria vector, Anopheles subpictus Grassi, filariasis vector, Culex quinquefasciatus, Say (Diptera: Culicidae), and the larvae of cattle tick Rhipicephalus (Boophilus) microplus, Canestrini (Acari: Ixodidae). The metallic copper nanoparticles (Cu NPs) synthesized by polyol process from copper acetate as precursor and Tween 80 were used as both the medium and the stabilizing reagent. The efficacy of synthesized Cu NPs was tested against the larvae of blood-sucking parasites. UV-vis spectra characterization was performed, and peak was observed at 575 nm, which is the characteristic to the surface plasmon bond of Cu NPs. The strong surface plasmon absorption band observed at 575 nm may be due to the formation of non-oxidized Cu NPs. X-ray diffraction (XRD) spectral data showed concentric rings corresponding to the 26.79 (111), 34.52 (200), and 70.40 (220) reflections. XRD spectrum of the copper nanoparticles exhibited 2θ values corresponding to the copper nanocrystal. No peaks of impurities are observed in XRD data. The scanning electron micrograph (SEM) showed structures of irregular polygonal, cylindrical shape, and the size range was found to be 35-80 nm. The size of the Cu NPs was measured by atomic force microscope (AFM) in non-contact mode. For imaging by AFM, the sample was suspended in acetone and spins coated on a silicon wafer. The line profile image was drawn by the XEI software and the horizontal line at 6 µm on a 2D AFM image. Research has demonstrated that metallic nanoparticles produce toxicity in aquatic organisms that is due largely to effects of particulates as opposed to release of dissolved ions. Copper acetate solution tested against the parasite larvae exposed to varying concentrations and the larval mortality was observed for 24 h. The larval percent mortality observed in synthesized Cu NPs were 36, 49, 75, 93,100; 32, 53, 63, 73, and 100 and 36, 47, 69, 88, 100 at 0.5, 1.0, 2.0, 4.0, and 8.0 mg/L against A. subpictus, C. quinquefasciatus and R. microplus, respectively. The larval percent mortality shown in copper acetate solution were 16, 45, 57, 66 and 100, 37, 58, 83, 87, and 100 and 41, 59, 79, 100, and 100 at 10, 20, 30, 40, and 50 mg/L against A. subpictus, C. quinquefasciatus, and R. microplus, respectively. The maximum efficacy was observed in Cu NPs and copper acetate solution against the larvae of A. subpictus, C. quinquefasciatus, and R. microplus with LC(50) and r (2) values of 0.95 and 23.47, 1.01 and 15.24, and 1.06 and 14.14 mg/L with r (2) = 0.766; 0.957 and 0.908; 0.946; and 0.816 and 0.945, respectively. The control (distilled water) showed nil mortality in the concurrent assay. The chi-square value was significant at p ≤ 0.05 level. This is the first report on anti-parasitic activity of the synthesized Cu NPs and copper acetate solution.


Subject(s)
Copper/pharmacology , Insecta/drug effects , Insecticides/pharmacology , Metal Nanoparticles/toxicity , Polysorbates/toxicity , Animals , Insecticides/chemistry , Larva/drug effects , Metal Nanoparticles/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Particle Size , Polysorbates/chemistry , Spectrophotometry , Surface Plasmon Resonance , Survival Analysis , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...