Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(24): e2311980121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38830092

ABSTRACT

Multiple abrupt warming events ("hyperthermals") punctuated the Early Eocene and were associated with deep-sea temperature increases of 2 to 4 °C, seafloor carbonate dissolution, and negative carbon isotope (δ13C) excursions. Whether hyperthermals were associated with changes in the global ocean overturning circulation is important for understanding their driving mechanisms and feedbacks and for gaining insight into the circulation's sensitivity to climatic warming. Here, we present high-resolution benthic foraminiferal stable isotope records (δ13C and δ18O) throughout the Early Eocene Climate Optimum (~53.26 to 49.14 Ma) from the deep equatorial and North Atlantic. Combined with existing records from the South Atlantic and Pacific, these indicate consistently amplified δ13C excursion sizes during hyperthermals in the deep equatorial Atlantic. We compare these observations with results from an intermediate complexity Earth system model to demonstrate that this spatial pattern of δ13C excursion size is a predictable consequence of global warming-induced changes in ocean overturning circulation. In our model, transient warming drives the weakening of Southern Ocean-sourced overturning circulation, strengthens Atlantic meridional water mass aging gradients, and amplifies the magnitude of negative δ13C excursions in the equatorial to North Atlantic. Based on model-data consistency, we conclude that Eocene hyperthermals coincided with repeated weakening of the global overturning circulation. Not accounting for ocean circulation impacts on δ13C excursions will lead to incorrect estimates of the magnitude of carbon release driving hyperthermals. Our finding of weakening overturning in response to past transient climatic warming is consistent with predictions of declining Atlantic Ocean overturning strength in our warm future.

2.
Paleoceanogr Paleoclimatol ; 36(10): e2020PA004090, 2021 Oct.
Article in English | MEDLINE | ID: mdl-35874321

ABSTRACT

Astronomical cycles are strongly expressed in marine geological records, providing important insights into Earth system dynamics and an invaluable means of constructing age models. However, how various astronomical periods are filtered by the Earth system and the mechanisms by which carbon reservoirs and climate components respond, particularly in absence of dynamic ice sheets, is unclear. Using an Earth system model that includes feedbacks between climate, ocean circulation, and inorganic (carbonate) carbon cycling relevant to geological timescales, we systematically explore the impact of astronomically modulated insolation forcing and its expression in model variables most comparable to key paleoceanographic proxies (temperature, the δ13C of inorganic carbon, and sedimentary carbonate content). Temperature predominately responds to short and long eccentricity and is little influenced by the modeled carbon cycle feedbacks. In contrast, the cycling of nutrients and carbon in the ocean generates significant precession power in atmospheric CO2, benthic ocean δ13C, and sedimentary wt% CaCO3, while inclusion of marine sedimentary and weathering processes shifts power to the long eccentricity period. Our simulations produce reduced pCO2 and dissolved inorganic carbon (DIC) δ13C at long eccentricity maxima and, contrary to early Cenozoic marine records, CaCO3 preservation in the model is enhanced during eccentricity-modulated warmth. Additionally, the magnitude of δ13C variability simulated in our model underestimates marine proxy records. These model-data discrepancies hint at the possibility that the Paleogene silicate weathering feedback was weaker than modeled here and that additional organic carbon cycle feedbacks are necessary to explain the full response of the Earth system to astronomical forcing.

3.
Science ; 370(6517)2020 11 06.
Article in English | MEDLINE | ID: mdl-33154110

ABSTRACT

As the world warms, there is a profound need to improve projections of climate change. Although the latest Earth system models offer an unprecedented number of features, fundamental uncertainties continue to cloud our view of the future. Past climates provide the only opportunity to observe how the Earth system responds to high carbon dioxide, underlining a fundamental role for paleoclimatology in constraining future climate change. Here, we review the relevancy of paleoclimate information for climate prediction and discuss the prospects for emerging methodologies to further insights gained from past climates. Advances in proxy methods and interpretations pave the way for the use of past climates for model evaluation-a practice that we argue should be widely adopted.

4.
Nat Commun ; 8(1): 353, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28842564

ABSTRACT

Knowledge of the onset duration of the Paleocene-Eocene Thermal Maximum-the largest known greenhouse-gas-driven global warming event of the Cenozoic-is central to drawing inferences for future climate change. Single-foraminifera measurements of the associated carbon isotope excursion from Maud Rise (South Atlantic Ocean) are controversial, as they seem to indicate geologically instantaneous carbon release and anomalously long ocean mixing. Here, we fundamentally reinterpret this record and extract the likely PETM onset duration. First, we employ an Earth system model to illustrate how the response of ocean circulation to warming does not support the interpretation of instantaneous carbon release. Instead, we use a novel sediment-mixing model to show how changes in the relative population sizes of calcareous plankton, combined with sediment mixing, can explain the observations. Furthermore, for any plausible PETM onset duration and sampling methodology, we place a probability on not sampling an intermediate, syn-excursion isotopic value. Assuming mixed-layer carbonate production continued at Maud Rise, we deduce the PETM onset was likely <5 kyr.Single-foraminifera measurements of the PETM carbon isotope excursion from Maud Rise have been interpreted as indicating geologically instantaneous carbon release. Here, the authors explain these records using an Earth system model and a sediment-mixing model and extract the likely PETM onset duration.

5.
Mol Microbiol ; 92(1): 28-46, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24612328

ABSTRACT

When Escherichia coli grows in the presence of DNA-damaging agents such as methyl methanesulphonate (MMS), absence of the full-length form of Translation Initiation Factor 2 (IF2-1) or deficiency in helicase activity of replication restart protein PriA leads to a considerable loss of viability. MMS sensitivity of these mutants was contingent on the stringent response alarmone (p)ppGpp being at low levels. While zero levels (ppGpp°) greatly aggravated sensitivity, high levels promoted resistance. Moreover, M+ mutations, which suppress amino acid auxotrophy of ppGpp° strains and which have been found to map to RNA polymerase subunits, largely restored resistance to IF2-1- and PriA helicase-deficient mutants. The truncated forms IF2-2/3 played a key part in inducing especially severe negative effects in ppGpp° cells when restart function priB was knocked out, causing loss of viability and severe cell filamentation, indicative of SOS induction. Even a strain with the wild-type infB allele exhibited significant filamentation and MMS sensitivity in this background whereas mutations that prevent expression of IF2-2/3 essentially eliminated filamentation and largely restored MMS resistance. The results suggest different influences of IF2-1 and IF2-2/3 on the replication restart system depending on (p)ppGpp levels, each having the capacity to maximize survival under differing growth conditions.


Subject(s)
DNA Helicases/metabolism , Escherichia coli K12/genetics , Escherichia coli Proteins/metabolism , Guanosine Tetraphosphate/pharmacology , Prokaryotic Initiation Factor-2/metabolism , Bacteriophage mu/genetics , Bacteriophage mu/physiology , DNA Damage/drug effects , DNA Helicases/genetics , DNA Replication/drug effects , Escherichia coli K12/drug effects , Escherichia coli K12/growth & development , Escherichia coli Proteins/genetics , Methyl Methanesulfonate/pharmacology , Prokaryotic Initiation Factor-2/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...