Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ambio ; 50(1): 174-189, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32152905

ABSTRACT

The 2015-2016 El Niño had large impacts globally. The effects were not as great as anticipated in Kenya, however, leading some commentators to call it a 'non-event'. Our study uses a novel combination of participatory Climate Vulnerability and Capacity Analysis tools, and new and existing social and biophysical data, to analyse vulnerability to, and the multidimensional impacts of, the 2015-2016 El Niño episode in southern coastal Kenya. Using a social-ecological systems lens and a unique dataset, our study reveals impacts overlooked by conventional analysis. We show how El Niño stressors interact with and amplify existing vulnerabilities to differentially impact local ecosystems and people. The policy significance of this finding is that the development of specific national capacities to deal with El Niño events is insufficient; it will be necessary to also address local vulnerabilities to everyday and recurrent stressors and shocks to build resilience to the effects of El Niño and other extremes in climate and weather.


Subject(s)
Ecosystem , El Nino-Southern Oscillation , Humans , Kenya , Weather
2.
Oecologia ; 172(1): 271-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23073636

ABSTRACT

Enhanced species richness can stimulate the productivity of plant communities; however, its effect on the belowground production of forests has scarcely been tested, despite the role of tree roots in carbon storage and ecosystem processes. Therefore, we tested for the effects of tree species richness on mangrove root biomass: thirty-two 6 m by 6 m plots were planted with zero (control), one, two or three species treatments of six-month-old Avicennia marina (A), Bruguiera gymnorrhiza (B) and Ceriops tagal (C). A monoculture of each species and the four possible combinations of the three species were used, with four replicate plots per treatment. Above- and belowground biomass was measured after three and four years' growth. In both years, the all-species mix (ABC) had significant overyielding of roots, suggesting complementarity mediated by differences in rhizosphere use amongst species. In year four, there was higher belowground than aboveground biomass in all but one treatment. Belowground biomass was strongly influenced by the presence of the most vigorously growing species, A. marina. These results demonstrate the potential for complementarity between fast- and slow-growing species to enhance belowground growth in mangrove forests, with implications for forest productivity and the potential for belowground carbon sequestration.


Subject(s)
Avicennia/growth & development , Biodiversity , Biomass , Rhizophoraceae/growth & development , Ecosystem , Plant Roots/growth & development , Plant Shoots/growth & development
3.
Philos Trans R Soc Lond B Biol Sci ; 365(1549): 2127-35, 2010 Jul 12.
Article in English | MEDLINE | ID: mdl-20513720

ABSTRACT

Mangroves are intertidal ecosystems that are particularly vulnerable to climate change. At the low tidal limits of their range, they face swamping by rising sea levels; at the high tidal limits, they face increasing stress from desiccation and high salinity. Facilitation theory may help guide mangrove management and restoration in the face of these threats by suggesting how and when positive intra- and interspecific effects may occur: such effects are predicted in stressed environments such as the intertidal, but have yet to be shown among mangroves. Here, we report the results of a series of experiments at low and high tidal sites examining the effects of mangrove density and species mix on seedling survival and recruitment, and on the ability of mangroves to trap sediment and cause surface elevation change. Increasing density significantly increased the survival of seedlings of two different species at both high and low tidal sites, and enhanced sediment accretion and elevation at the low tidal site. Including Avicennia marina in species mixes enhanced total biomass at a degraded high tidal site. Increasing biomass led to changed microenvironments that allowed the recruitment and survival of different mangrove species, particularly Ceriops tagal.


Subject(s)
Avicennia/growth & development , Climate Change , Ecosystem , Geologic Sediments , Kenya , Proportional Hazards Models , Salinity , Sri Lanka , Tidal Waves
SELECTION OF CITATIONS
SEARCH DETAIL
...