Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 10(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36298461

ABSTRACT

A collaboration program was established between the group of Health and Biotechnology (SaBio) of the IREC Institute of Game and Wildlife Research (CSIC-UCLM-JCCM, Spain) and the National Agricultural Research Organization of Uganda (NARO) for the development of vaccines for the control of cattle ticks in Uganda. Controlled pen trials identified a tick protective antigen, Rhipicephalus appendiculatus Subolesin, and a cross-species-effective vaccine formulation. As the next step, a controlled vaccine field trial has been approved by Ugandan state regulatory authorities, the Uganda National Council for Science and Technology (UNCST) and the National Drug Authority (NDA), to evaluate the efficacy and effectiveness of the vaccine formulation for the control of cattle tick infestations under field conditions. The results of this trial may lead to the approval of the vaccine for application in Uganda to improve cattle health and production while reducing the use of acaricides.

2.
Vaccines (Basel) ; 11(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36679944

ABSTRACT

Ticks are worldwide ectoparasites to humans and animals, and are associated with numerous health and economic effects. Threatening over 80% of the global cattle population, tick and tick-borne diseases (TTBDs) particularly constrain livestock production in the East, Central and Southern Africa. This, therefore, makes their control critical to the sustainability of the animal industry in the region. Since ticks are developing resistance against acaricides, anti-tick vaccines (ATVs) have been proposed as an environmentally friendly control alternative. Whereas they have been used in Latin America and Australia to reduce tick populations, pathogenic infections and number of acaricide treatments, commercially registered ATVs have not been adopted in tropical Africa for tick control. This is majorly due to their limited protection against economically important tick species of Africa and lack of research. Recent advances in various omics technologies and reverse vaccinology have enabled the identification of many candidate anti-tick antigens (ATAs), and are likely to usher in the next generation of vaccines, for which Africa should prepare to embrace. Herein, we highlight some scientific principles and approaches that have been used to identify ATAs, outline characteristics of a desirable ATA for vaccine design and propose the need for African governments to investment in ATV research to develop vaccines relevant to local tick species (personalized vaccines). We have also discussed the prospect of incorporating anti-tick vaccines into the integrated TTBDs control strategies in the sub-Saharan Africa, citing the case of Uganda.

3.
Front Vet Sci ; 8: 610375, 2021.
Article in English | MEDLINE | ID: mdl-34212016

ABSTRACT

Uganda is a Newcastle disease (ND) endemic country where the disease is controlled by vaccination using live LaSota (genotype II) and I2 (genotype I) vaccine strains. Resurgent outbreak episodes call for an urgent need to understand the antigenic diversity of circulating wild Avian Avulavirus serotype-1 (AAvV-1) strains. High mutation rates and the continuous emergence of genetic and antigenic variants that evade immunity make non-segmented RNA viruses difficult to control. Antigenic and functional analysis of the key viral surface proteins is a crucial step in understanding the antigen diversity between vaccine lineages and the endemic wild ND viruses in Uganda and designing ND peptide vaccines. In this study, we used computational analysis, phylogenetic characterization, and structural modeling to detect evolutionary forces affecting the predicted immune-dominant fusion (F) and hemagglutinin-neuraminidase (HN) proteins of AAvV-1 isolates from waterfowl and poultry in Uganda compared with that in LaSota vaccine strain. Our findings indicate that mutational amino acid variations at the F protein in LaSota strain, 25 poultry wild-type and 30 waterfowl wild-type isolates were distributed at regions including the functional domains of B-cell epitopes or N-glycosylation sites, cleavage site, fusion site that account for strain variations. Similarly, conserved regions of HN protein in 25 Ugandan domestic fowl isolates and the representative vaccine strain varied at the flanking regions and potential linear B-cell epitope. The fusion sites, signal peptides, cleavage sites, transmembrane domains, potential B-cell epitopes, and other specific regions of the two protein types in vaccine and wild viruses varied considerably at structure by effective online epitope prediction programs. Cleavage site of the waterfowl isolates had a typical avirulent motif of 111GGRQGR'L117 with the exception of one isolate which showed a virulent motif of 111GGRQKR'F117. All the poultry isolates showed the 111GRRQKR'F117 motif corresponding to virulent strains. Amino acid sequence variations in both HN and F proteins of AAvV-1 isolates from poultry, waterfowl, and vaccine strain were distributed over the length of the proteins with no detectable pattern, but using the experimentally derived 3D structure data revealed key-mapped mutations on the surfaces of the predicted conformational epitopes encompassing the experimental major neutralizing epitopes. The phylogenic tree constructed using the full F gene and partial F gene sequences of the isolates from poultry and waterfowl respectively, showed that Ugandan ND aquatic bird and poultry isolates share some functional amino acids in F sequences yet do remain unique at structure and the B-cell epitopes. Recombination analyses showed that the C-terminus and the rest of the F gene in poultry isolates originated from prevalent velogenic strains. Altogether, these could provide rationale for antigenic diversity in wild ND isolates of Uganda compared with the current ND vaccine strains.

4.
Ticks Tick Borne Dis ; 12(5): 101756, 2021 09.
Article in English | MEDLINE | ID: mdl-34134062

ABSTRACT

Herein we review the epidemiology of ticks and tick-borne diseases (TTBDs), their impact on livestock health and on the economy, control and associated challenges in Uganda. Ticks are leading vectors of economically important pathogens and are widespread in Uganda due to suitable climatic conditions. Besides the physical injury inflicted on the animal host, ticks transmit a number of pathogens that can cause morbidity and mortality of livestock if untreated, resulting in economic losses. Uganda suffers an aggregated annual loss (direct and indirect) of over USD 1.1 billion in the TTBDs complex. East Coast fever (ECF) caused by a protozoan haemoparasite, Theileria parva, is the most prevalent and economically important tick-borne disease (TBD) in Uganda and its vector, the brown ear tick (Rhipicephalus appendiculatus) widely distributed. Other prevalent TBDs in Uganda include anaplasmosis, babesiosis and heartwater. We highlight the role of agro-ecological zones (AEZs) and livestock management system in the distribution of TTBDs, citing warm and humid lowlands as being ideal habitats for ticks and endemic for TBDs. Control of TTBDs is a matter of great importance as far as animal health is concerned in Uganda. Indigenous cattle, which make up over 90% of the national herd are known to be more tolerant to TTBDs and most farms rely on endemic stability to TBDs for control. However, exotic cattle breeds are more capital intensive than indigenous breeds, but the increasing adoption of tick-susceptible exotic cattle breeds (especially dairy) in western and central Uganda demands intensive use of acaricides for tick control and prevention of TBDs. Such acaricide pressure has unfortunately led to selection of acaricide-resistant tick populations and the consequent acaricide resistance observed in the field. Vaccination against ECF, selective breeding for tick resistance and integrated tick control approaches that limit tick exposure, could be adopted to interrupt spread of acaricide resistance. We recommend increasing monitoring and surveillance for TTBDs and for emerging acaricide resistance, improved extension services and sensitization of farmers on tick control measures, appropriate acaricide use and the development and implementation of vaccines for the control of TTBDs as more sustainable and effective interventions. A tick control policy should be developed, taking into account variations of agro-ecological zones, farm circumstances and indigenous technical knowledge, and this should be incorporated into the overall animal health program.


Subject(s)
Acaricides/pharmacology , Cattle Diseases/epidemiology , Tick-Borne Diseases/epidemiology , Anaplasmosis/epidemiology , Animals , Antibodies, Protozoan , Babesiosis/epidemiology , Cattle , Farmers , Protozoan Vaccines , Rhipicephalus/parasitology , Seroepidemiologic Studies , Theileria parva/isolation & purification , Theileriasis/epidemiology , Tick Control , Tick Infestations/veterinary , Uganda/epidemiology
5.
Onderstepoort J Vet Res ; 85(1): e1-e7, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-30035597

ABSTRACT

Avian paramyxovirus type-1 (APMV-1) viruses of the lentogenic pathotypes are often isolated from wild aquatic birds and may mutate to high pathogenicity when they cross into poultry and cause debilitating Newcastle disease. This study characterised AMPV-1 isolated from fresh faecal droppings from wild aquatic birds roosting sites in Uganda. Fresh faecal samples from wild aquatic birds at several waterbodies in Uganda were collected and inoculated into 9-10-day-old embryonated chicken eggs. After isolation, the viruses were confirmed as APMV-1 by APMV-1-specific polymerase chain reaction (PCR). The cleavage site of the fusion protein gene for 24 representative isolates was sequenced and phylogenetically analysed and compared with representative isolates of the different APMV-1 genotypes in the GenBank database. In total, 711 samples were collected from different regions in the country from which 72 isolates were recovered, giving a prevalence of 10.1%. Sequence analysis of 24 isolates revealed that the isolates were all lentogenic, with the typical 111GGRQGR'L117 avirulent motif. Twenty-two isolates had similar amino acid sequences at the cleavage site, which were different from the LaSota vaccine strain by a silent nucleotide substitution T357C. Two isolates, NDV/waterfowl/Uganda/MU150/2011 and NDV/waterfowl/Uganda/MU186/2011, were different from the rest of the isolates in a single amino acid, with aspartate and alanine at positions 124 and 129, respectively. The results of this study revealed that Ugandan aquatic birds indeed harbour APMV-1 that clustered with class II genotype II strains and had limited genetic diversity.


Subject(s)
Bird Diseases/virology , Genetic Variation , Genotype , Newcastle Disease/epidemiology , Newcastle disease virus/genetics , Animals , Birds , Newcastle Disease/virology , Newcastle disease virus/classification , Phylogeny , Sequence Analysis, RNA/veterinary , Uganda
6.
Avian Pathol ; 46(4): 386-395, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28277776

ABSTRACT

Vaccine failures after Newcastle disease vaccination with the current commercial vaccines have been reported and are associated with many factors, including genotypic and antigenic differences between vaccine and outbreak strains, although all APMV-1 members belong to one serotype. We assessed the immunoprotection ability of four thermostable, low-virulent Newcastle disease-virus isolates from Ugandan waterfowl against challenge with a virulent strain (MDT = 36.8 h, ICPI = 1.78) isolated from morbid chicken. Six-week-old commercial Leghorn layers, challenged at 21 days post immunization were used. Four isolates designated: NDV-133/UG/MU/2011, NDV-177/UG/MU/2011, NDV-178/UG/MU/2011 and NDV-173/UG/MU/2011 induced mean haemagglutinin inhibition antibody titres of log2 9.3, 8.2, 6.3 and 2.0, respectively, at 21 days post immunization. The antibody titres correlated with the protection rates (R² = 0.86, p < 0.007) of 60%, 50%, 20% and 0% of birds, respectively, against challenge at 14 days post challenge. Further evaluation of these and more low-virulent isolates might provide an alternative to the current commercial vaccine failures.


Subject(s)
Chickens , Newcastle Disease/prevention & control , Newcastle disease virus/immunology , Poultry Diseases/prevention & control , Viral Vaccines/immunology , Animals , Base Sequence , Chick Embryo , DNA, Viral/genetics , Immunogenicity, Vaccine , Newcastle disease virus/pathogenicity , RNA, Viral , Reverse Transcriptase Polymerase Chain Reaction , Virulence , Virus Replication/physiology
7.
Virol J ; 13: 103, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27329265

ABSTRACT

BACKGROUND: Uganda poultry production is still faced with frequent outbreaks of Newcastle disease (ND) in the backyard free-range systems despite the accessibility of cross protective vaccines. Live bird markets and waterfowl has long been reported as a major source of disease spread as well as potential sources of avirulent strains that may mutate to virulent strains. ND-virus has been reported enzootic in Ugandan poultry but limited studies have been conducted to ascertain thermostability phenotypes of the Ugandan ND-virus strains and to understand how these relate to vaccine strains. METHODS: This study evaluated thermostability of 168 ND-virus field isolates recovered from live bird markets and waterfowls in Uganda compared to two live commercial vaccine strains (I2 and LaSota) by standard thermostability procedures and Hemagglutinin-Neuraminidase (HN) gene domains. The known pathotypes with thermostability profiles were compared at HN amino acid sequences. RESULTS: Field isolates displayed disparate heat stability and HN gene domains. Thermolabile isolates were inactivated within 15 min, while the most thermostable isolates were inactivated in 120 min. Four thermostable isolates had more than 2 log2 heamaglutinin (HA) titers during heat treatment and the infectivity of 9.8 geometric mean of log10 EID50 % in embryonated eggs. One isolate from this study exhibited a comparable thermostability and stable infectivity titers after serial passages, to that of reference commercial vaccine was recommended for immunogenicity and protection studies. CONCLUSION: The occurrence of ND-virus strains in waterfowl and live bird markets with disparate thermostability and varying HN gene domains indicate circulation of different thermostable and thermolabile ND-virus pathotypes in the country.


Subject(s)
Bird Diseases/virology , HN Protein/chemistry , Newcastle Disease/virology , Newcastle disease virus/isolation & purification , Newcastle disease virus/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Animals , Anseriformes/virology , Birds/virology , HN Protein/genetics , HN Protein/metabolism , Hot Temperature , Newcastle disease virus/chemistry , Newcastle disease virus/genetics , Protein Domains , Protein Stability , Uganda , Viral Proteins/genetics
8.
Article in English | MEDLINE | ID: mdl-26581408

ABSTRACT

There is an urgent need for a unified resource that integrates trans-disciplinary annotations of emerging and reemerging animal infectious and zoonotic diseases. Such data integration will provide wonderful opportunity for epidemiologists, researchers and health policy makers to make data-driven decisions designed to improve animal health. Integrating emerging and reemerging animal infectious and zoonotic disease data from a large variety of sources into a unified open-access resource provides more plausible arguments to achieve better understanding of infectious and zoonotic diseases. We have developed a model for interlinking annotations of these diseases. These diseases are of particular interest because of the threats they pose to animal health, human health and global health security. We demonstrated the application of this model using brucellosis, an infectious and zoonotic disease. Preliminary annotations were deposited into VetBioBase database (http://vetbiobase.igbb.msstate.edu). This database is associated with user-friendly tools to facilitate searching, retrieving and downloading of disease-related information. Database URL: http://vetbiobase.igbb.msstate.edu.


Subject(s)
Communicable Diseases/genetics , Molecular Sequence Annotation , Software , Zoonoses/genetics , Animals , Biomarkers/metabolism , Brucellosis/genetics , Databases as Topic , Search Engine
9.
Virol J ; 11: 173, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25273689

ABSTRACT

BACKGROUND: Newcastle disease is still a serious disease of poultry especially in backyard free-range production systems despite the availability of cross protective vaccines. Healthy-looking poultry from live bird markets have been suspected as a major source of disease spread although limited studies have been conducted to ascertain the presence of the virulent strains in the markets and to understand how they are related to outbreak strains. METHODS: This study evaluated the occurrence of Newcastle disease virus in samples collected from poultry in live bird markets across Uganda. The isolates were pathoyped using standard methods (mean death time (MDT), intracelebral pathogenicity index (ICPI), and sequencing of the fusion protein cleavage site motif) and also phylogenetically analysed after sequencing of the full fusion and hemagglutin-neuraminidase genes. The isolates were classified into genotypes and subgenotypes based on the full fusion protein gene classification system and compared with other strains in the region and world-wide. RESULTS: Virulent avian paramyxovirus type I (APMV-1) (Newcastle disease virus) was isolated in healthy-looking poultry in live bird markets. The viruses belonged to a new subgenotype, Vd, in genotype V, and clustered together with Tanzania and Kenya strains. They harbored low genetic diversity. CONCLUSION: The occurrence of virulent AMPV-1 strains in live bird markets may serve as sources of Newcastle disease outbreaks in non-commercial farms.


Subject(s)
Newcastle Disease/virology , Newcastle disease virus/genetics , Animals , Commerce , Evolution, Molecular , Genetic Variation , Molecular Sequence Data , Newcastle Disease/epidemiology , Newcastle disease virus/pathogenicity , Phylogeny , Poultry , Uganda/epidemiology , Virulence
10.
Parasit Vectors ; 7: 414, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25175844

ABSTRACT

BACKGROUND: Non-clinical Theileria parva infection among indigenous cattle occurs upon recovery from primary disease during the first year of life. Continuous exposure to infection through contaminated tick infestations with absence of clinical disease gives rise to endemic stability. Endemic stable populations may become sources of infection if contaminated tick vectors are shared with susceptible exotic cattle. This study aimed at establishing a nationwide distribution of non-clinical T. parva infection among indigenous cattle populations to inform novel control strategies. METHODS: The occurrence of non-clinical T. parva infection among apparently healthy 925 indigenous cattle from 209 herds spread out in 10 agro-ecological zones (AEZs) was determined using a nested PCR assay. The influence of AEZ, breed, sex, age and farmers' ranking of ECF importance were interrogated for influence of non-clinical parasite occurrence. RESULTS: The overall prevalence of non-clinical T. parva infection was 30% (278/925). A gradual increase of non-clinical T. parva infection was observed ranging from 17% (95% CI: 0.03-0.23) to 43% (95% CI: 0.3-0.55) in the North Eastern Savannah Grasslands (NESG) to the Western Highland Ranges (WHR) respectively. A similarly associated 18% (95% CI: 0.07-0.28) and 35% (95% CI: 0.3-0.39) non-clinical parasite prevalence was observed among the East African shorthorn Zebu (EASZ) and Ankole cattle respectively. Average herd level non-clinical T. parva prevalence was 28%, ranging from zero to 100%. The likelihood of non-clinical T. parva infection was 35.5% greater in the western highlands compared to the northeastern semi-arid AEZs. CONCLUSIONS: Non-clinical T. parva occurs countrywide, structured along patterns of AEZ and breed gradients. These findings may guide policy formulation, deployment of integrated control strategies and local cattle improvement programs.


Subject(s)
Agriculture , Ecosystem , Theileria parva , Theileriasis/parasitology , Animals , Cattle , Female , Male , Prevalence , Theileriasis/epidemiology , Uganda/epidemiology
11.
BMC Vet Res ; 10: 50, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24576325

ABSTRACT

BACKGROUND: Avian influenza viruses may cause severe disease in a variety of domestic animal species worldwide, with high mortality in chickens and turkeys. To reduce the information gap about prevalence of these viruses in animals in Uganda, this study was undertaken. RESULTS: Influenza A virus prevalence by RT-PCR was 1.1% (45/4,052) while seroprevalence by ELISA was 0.8% (24/2,970). Virus prevalence was highest in domestic ducks (2.7%, 17/629) and turkeys (2.6%, 2/76), followed by free-living waterfowl (1.3%, 12/929) and swine (1.4%, 7/511). A lower proportion of chicken samples (0.4%, 7/1,865) tested positive. No influenza A virus was isolated. A seasonal prevalence of these viruses in waterfowl was 0.7% (4/561) for the dry and 2.2% (8/368) for the wet season. In poultry, prevalence was 0.2% (2/863) for the dry and 1.4% (24/1,713) for the wet season, while that of swine was 0.0% (0/159) and 2.0% (7/352) in the two seasons, respectively. Of the 45 RT-PCR positive samples, 13 (28.9%) of them were H5 but none was H7. The 19 swine sera positive for influenza antibodies by ELISA were positive for H1 antibodies by HAI assay, but the subtype(s) of ELISA positive poultry sera could not be determined. Antibodies in the poultry sera could have been those against subtypes not included in the HAI test panel. CONCLUSIONS: The study has demonstrated occurrence of influenza A viruses in animals in Uganda. The results suggest that increase in volumes of migratory waterfowl in the country could be associated with increased prevalence of these viruses in free-living waterfowl and poultry.


Subject(s)
Animals, Wild , Anseriformes , Influenza A virus/isolation & purification , Livestock , Animals , Female , Logistic Models , Male , Odds Ratio , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Risk Factors , Seroepidemiologic Studies , Uganda/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...