Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 170(1): 372-80, 2010 Sep 29.
Article in English | MEDLINE | ID: mdl-20600640

ABSTRACT

Functional recovery following facial nerve injury is poor. Neuromuscular junctions (NMJs) are "bridged" by terminal Schwann cells and numerous regenerating axonal sprouts. We have shown that this poly-innervation of NMJs can be reduced by manual stimulation (MS) with restoration of whisking function. In addition, we have recently reported that insulin-like growth factor-1 (IGF-1) is required to mediate the beneficial effects of MS. Here we extend our findings to brain derived neurotrophic factor (BDNF). We then examined the effect of MS after facial-facial anastomosis (FFA) in heterozygous mice deficient in BDNF (BDNF(+/-)) or in its receptor TrkB (TrkB(+/-)). We quantified vibrissal motor performance and the percentage of NMJ bridged by S100-positive terminal Schwann cells. In intact BDNF(+/-) or TrkB(+/-) mice and their wild type (WT) littermates, there were no differences in vibrissal whisking nor in the percentage of bridged NMJ (0% in each genotype). After FFA and handling alone (i.e. no MS) in WT animals, vibrissal whisking amplitude was reduced (60% lower than intact) and the percentage of bridged NMJ increased (27% more than intact). MS improved both the amplitude of vibrissal whisking (not significantly different from intact) and the percentage of bridged NMJ (11% more than intact). After FFA and handling in BDNF(+/-) or TrkB(+/-) mice, whisking amplitude was again reduced (53% and 60% lower than intact) and proportion of bridged NMJ increased (24% and 29% more than intact). However, MS failed to improve outcome in both heterozygous strains (whisking amplitude 55% and 58% lower than intact; proportion of bridged NMJ 27% and 18% more than intact). We conclude that BDNF and TRkB are required to mediate the effects of MS on target muscle reinnervation and recovery of whisking function.


Subject(s)
Brain-Derived Neurotrophic Factor/physiology , Muscle Denervation , Nerve Regeneration/physiology , Receptor, trkB/physiology , Recovery of Function/physiology , Vibrissae/innervation , Vibrissae/physiology , Animals , Female , Mice , Mice, Transgenic , Physical Stimulation/methods , Random Allocation
2.
Exp Neurol ; 222(2): 226-34, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20067789

ABSTRACT

Recently, we showed that manual stimulation (MS) of denervated vibrissal muscles enhanced functional recovery following facial nerve cut and suture (FFA) by reducing poly-innervation at the neuro-muscular junctions (NMJ). Although the cellular correlates of poly-innervation are established, with terminal Schwann cells (TSC) processes attracting axon sprouts to "bridge" adjacent NMJ, molecular correlates are poorly understood. Since quantitative RT-PCR revealed a rapid increase of IGF-1 mRNA in denervated muscles, we examined the effect of daily MS for 2 months after FFA in IGF-1(+/-) heterozygous mice; controls were wild-type (WT) littermates including intact animals. We quantified vibrissal motor performance and the percentage of NMJ bridged by S100-positive TSC. There were no differences between intact WT and IGF-1(+/-) mice for vibrissal whisking amplitude (48 degrees and 49 degrees ) or the percentage of bridged NMJ (0%). After FFA and handling alone (i.e. no MS) in WT animals, vibrissal whisking amplitude was reduced (60% lower than intact) and the percentage of bridged NMJ increased (42% more than intact). MS improved both the amplitude of vibrissal whisking (not significantly different from intact) and the percentage of bridged NMJ (12% more than intact). After FFA and handling in IGF-1(+/-) mice, the pattern was similar (whisking amplitude 57% lower than intact; proportion of bridged NMJ 42% more than intact). However, MS did not improve outcome (whisking amplitude 47% lower than intact; proportion of bridged NMJ 40% more than intact). We conclude that IGF-I is required to mediate the effects of MS on target muscle reinnervation and recovery of whisking function.


Subject(s)
Facial Muscles/physiology , Facial Nerve Injuries/rehabilitation , Insulin-Like Growth Factor I/metabolism , Physical Stimulation/methods , Recovery of Function/physiology , Vibrissae/physiology , Analysis of Variance , Animals , Disease Models, Animal , Facial Nerve Injuries/pathology , Female , Functional Laterality/physiology , Gene Expression Regulation/physiology , Handling, Psychological , Insulin-Like Growth Factor I/deficiency , Mice , Mice, Knockout , Movement/physiology , Rats , Rats, Sprague-Dawley , Receptor, IGF Type 1/metabolism , Receptors, Nicotinic/metabolism , Regeneration/physiology , S100 Proteins/metabolism , Vibrissae/innervation
SELECTION OF CITATIONS
SEARCH DETAIL
...