Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38869550

ABSTRACT

High-throughput methods are extremely important in today's materials science, especially in the case of thin film characterization. The micro-combinatorial method enables the deposition and characterization of entire multicomponent thin film systems within a single sample. In this paper, we report the application of this method for the comprehensive TEM characterization of the Y-Ti-O layer system. Variable composition samples (YxTi1-xOy) were prepared by dual DC magnetron sputtering, covering the entire (0 ≤ x ≤ 1) concentration range. The structure and morphology of phases formed in both as-deposited and annealed samples at 600, 700, and 800 °C were revealed as a function of Y-Ti composition (x). A comprehensive map showing the appropriate amorphous and crystalline phases, and their occurrence regions of the whole Y-Ti-O layer system, was revealed. Thanks to the applied method, it was shown with ease that at the given experimental conditions, the Y2Ti2O7 phase with a pyrochlore structure forms already at 700 °C without the TiO2 and Y2O3 by-phases, which is remarkably lower than the required temperature for most physical preparation methods, demonstrating the importance and benefits of creating phase maps in materials science and technology.

2.
Acta Biomater ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838906

ABSTRACT

Bone is a composite material principally made up of a mineral phase (apatite) and collagen fibrils. The mineral component of bone occurs in the form of polycrystalline platelets 2-6 nm in thickness. These platelets are packed and probably glued together in stacks of two or more, ranging up to >30 platelets. Here we show that most of these stacks are curved flat sheets whose cylindrical axes are oriented parallel to the long axes of collagen fibrils. Consequently, the curvature of the platelets is not detectable in TEM sections cut parallel to the collagen fibril axes. The radius of curvature around these axes ranges from about 25 nm (the average radius of the collagen fibrils) to 100's of nm. The shapes of these curved forms contribute to the compressive strength of bone. STATEMENT OF SIGNIFICANCE: Bone, the material of which bones are made, is mainly composed of a protein, collagen, and the mineral apatite (calcium phosphate). The crystals have long been known to be flat plates about 5 nanometers (nm) thick. Here we show that the crystals are bound together in curved platelets with a radius of curvature between 25 and several hundred nm, which weave between fibrils of collagen. Some platelets wrap tightly around fibrils. The platelets form stacks of from two to up to 30. The crystals in the platelets are all oriented parallel to the cylindrical fibrils even though most crystals are not in contact with collagen. These curved structures provide greater strength to bone.

3.
Nanomaterials (Basel) ; 14(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38470774

ABSTRACT

Multiphase nanomaterials are of increasing importance in material science. Providing reliable and statistically meaningful information on their average nanostructure is essential for synthesis control and applications. In this paper, we propose a novel procedure that simplifies and makes more effective the electron powder diffraction-based Rietveld analysis of nanomaterials. Our single step in-TEM method allows to obtain the instrumental broadening function of the TEM directly from a single measurement without the need for an additional X-ray diffraction measurement. Using a multilayer graphene calibration standard and applying properly controlled acquisition conditions on a spherical aberration-corrected microscope, we achieved the instrumental broadening of ±0.01 Å in terms of interplanar spacing. The shape of the diffraction peaks is modeled as a function of the scattering angle using the Caglioti relation, and the obtained parameters for instrumental broadening can be directly applied in the Rietveld analysis of electron diffraction data of the analyzed specimen. During peak shape analysis, the instrumental broadening parameters of the TEM are controlled separately from nanostructure-related peak broadening effects, which contribute to the higher reliability of nanostructure information extracted from electron diffraction patterns. The potential of the proposed procedure is demonstrated through the Rietveld analysis of hematite nanopowder and two-component Cu-Ni nanocrystalline thin film specimens.

4.
Microsc Res Tech ; 87(4): 808-817, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38093599

ABSTRACT

Enamel prism is the main microstructural unit of mammalian enamel which composed of hundreds of bioapatite nanocrystals. Prism structure plays a key role in the excellent mechanical performance of dental enamel during millions of chewing cycles without significant remodeling. Thus, quantitative understanding of prism architecture is of utmost importance for biomechanical materials design. To characterize enamel prism orientation quantitatively, a novel image processing method has been developed. Our method is based on scanning electron microscopy images of etched enamel surface and consists of an ellipse fitting procedure, which provides a numerical approximation of prism shape and orientation in the studied cross section. The obtained analytical data allow to construct color coded orientation maps, which provide quick and useful insight into the microstructure of enamel. Besides striking visualization, orientation maps allow to extract and plot the rich information on the azimuthal and inclination angles of the prisms as function of location. Numerical data on prism arrangement can be analyzed using statistical tools over large areas, which paves the way towards quantifying comparative investigation of prism arrangement either in dentistry research or evolution biology. The application of the method is demonstrated for a distal-mesial cross-section of sound human tooth enamel. HIGHLIGHTS: Scanning electron microscopy images of etched enamel surface are analyzed using ellipse fitting. Geometrical parameters of the fitted ellipses provide numerical data of thousands of prisms. Prism arrangement is visualized on color coded orientation maps and analyzed using statistical tools.


Subject(s)
Image Processing, Computer-Assisted , Nanoparticles , Humans , Animals , Microscopy, Electron, Scanning , Mammals
5.
NanoImpact ; 29: 100444, 2023 01.
Article in English | MEDLINE | ID: mdl-36470408

ABSTRACT

Nanoscale Fe containing particles can penetrate the root apoplast. Nevertheless, cell wall size exclusion questions that for Fe mobilisation, a close contact between the membrane integrating FERRIC REDUCTASE OXIDASE (FRO) enzymes and Fe containing particles is required. Haematite nanoparticle suspension, size of 10-20 nm, characterized by 57Fe Mössbauer spectroscopy, TEM, ICP and SAED was subjected to Fe utilisation by the flavin secreting model plant cucumber (Cucumis sativus). Alterations in the structure and distribution of the particles were revealed by 57Fe Mössbauer spectroscopy, HRTEM and EDS element mapping. Biological utilisation of Fe resulted in a suppression of Fe deficiency responses (expression of CsFRO 1, 2 & 3 and RIBOFLAVIN A1; CsRIBA1 genes and root ferric chelate reductase activity). Haematite nanoparticles were stacked in the middle lamella of the apoplast. Fe mobilisation is evidenced by the reduction in the particle size. Fe release from nanoparticles does not require a contact with the plasma membrane. Parallel suppression in the CsFRO 1&3 and CsRIBA1 transcript amounts support that flavin biosynthesis is an inclusive Fe deficiency response involved in the reduction-based Fe utilisation of Cucumis sativus roots. CsFRO2 is suggested to play a role in the intracellular Fe homeostasis.


Subject(s)
Cucumis sativus , Iron , Iron/metabolism , Oxidoreductases/metabolism , Biological Transport , Flavins/metabolism
6.
Microsc Res Tech ; 86(2): 144-156, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36069159

ABSTRACT

The achievement of this work is that fine tuning of experimental and evaluation parameters can improve the absolute accuracy and reproducibility of selected area electron diffraction (SAED) to 0.1% without using internal standard. Due to the proposed procedure it was possible to reach a reproducibility better than 0.03% for camera length between sessions by careful control of specimen height and illumination conditions by monitoring lens currents. We applied a calibration specimen composed of nanocrystalline grains free of texture and providing narrow diffraction rings. Refinements of the centre of the diffraction pattern and corrections for elliptic ring distortions allowed for determining the ring diameters with an accuracy of 0.1%. We analyze the effect of different error sources and reason the achieved absolute accuracy of the measurement. Application of the proposed evaluation procedure is inevitable in case of multicomponent nanocomposites or textured materials and/or having close diffraction rings where application of automated procedures is limited. The achieved accuracy of 0.1% without internal standard is approaching that of routine laboratory XRD, and reduction of instrumental broadening due to the elaborated evaluation procedure allows for separation of close reflections, provides more reliable ring width and thus improved input parameters for further nanostructure analysis as demonstrated on dental enamel bioapatite.


Subject(s)
Electrons , Nanocomposites , Reproducibility of Results , Nanocomposites/chemistry
7.
Acta Biomater ; 120: 104-115, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32891873

ABSTRACT

Cross-sectional study of sound primary dental enamel revealed hardness zonation and, in parallel, significant change in the Mg content below the prismless layer. Mg content is known to play an important role in enamel apatite biomineralization, therefore, Mg ion exchange experiments were carried out on the outer surface of sound primary molars and on reference abiogenic Ca-phosphates using MgCl2 solution. Effects of Mg incorporation on crystal/particle size, ionic ratio and morphology were compared and the observed changes were explained by parallel diffusion and dissolution/reprecipitation processes. Based on depth profile analysis and high resolution electron microscopy of the Mg-exchanged dental enamel, a poorly ordered surface layer of approximately 10-15 nanometer thickness was identified. This thin layer is strongly enriched in Mg and has non-apatitic structure. Below the surface layer, the Mg content increased only moderately (up to ~3 at%) and the apatite crystal structure of enamel was preserved. As a common effect of the Mg exchanged volume, primary dental enamel exhibited about 20% increase of nanohardness, which is intrepreted by strengthening of both the thin surface layer and the region below due to the decreased crystallite size and the effect of incorporated Mg, respectively. STATEMENT OF SIGNIFICANCE: Dental enamel is the most durable mineralized tissue in the human body, which, in spite to be exposed to extreme conditions like mastication and acidic dissolution, is able to fulfill its biological function during lifetime. In this study we show that minor component magnesium can affect hardness properties of human primary dental enamel. Then, through Mg incorporation experiments we provide an additional proof for the poorly ordered Mg-containing intergranular phase which has been recently observed. Also, we report that the hardness of dental enamel can be increased by ca. 20% by Mg incorporation. These results contribute to a deeper understanding of sound primary dental enamel structure and may inspire new pathways for assisted remineralization of enamel and regenerative dentistry.


Subject(s)
Magnesium , Phosphates , Cross-Sectional Studies , Dental Enamel , Hardness , Humans
8.
Materials (Basel) ; 13(19)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33019776

ABSTRACT

Silica has many industrial (i.e., glass formers) and scientific applications. The understanding and prediction of the interesting properties of such materials are dependent on the knowledge of detailed atomic structures. In this work, amorphous silica subjected to an accelerated alkali silica reaction (ASR) was recorded at different time intervals so as to follow the evolution of the structure by means of high-resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), and electron pair distribution function (e-PDF), combined with X-ray powder diffraction (XRPD). An increase in the size of the amorphous silica nanostructures and nanopores was observed by HRTEM, which was accompanied by the possible formation of Si-OH surface species. All of the studied samples were found to be amorphous, as observed by HRTEM, a fact that was also confirmed by XRPD and e-PDF analysis. A broad diffuse peak observed in the XRPD pattern showed a shift toward higher angles following the higher reaction times of the ASR-treated material. A comparison of the EELS spectra revealed varying spectral features in the peak edges with different reaction times due to the interaction evolution between oxygen and the silicon and OH ions. Solid-state nuclear magnetic resonance (NMR) was also used to elucidate the silica nanostructures.

9.
J Nanosci Nanotechnol ; 20(7): 4587-4590, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31968522

ABSTRACT

High energy ball milling and subsequent high-pressure torsion method was carried out on nanocrystalline Mg powders catalyzed by 5 wt.% Nb2O5 and 5 wt.% carbon nanotubes. In the present research two distinct milling routes were performed in order to reveal the influence of the processing conditions on the hydrogenation behavior of the investigated alloys. The hydrogen sorption behavior of the milled powders and the bulk disks was examined in a Sieverts'-type apparatus. Structural characterization of the catalyzed Mg powders and disks has been carried out by high-resolution transmission electron microscopy and X-ray diffraction.

10.
Mater Sci Eng C Mater Biol Appl ; 104: 109966, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31499942

ABSTRACT

In this study we present the first crystal structure model for bone apatite based on the analysis of individual nanocrystals by high resolution transmission electron microscopy (HRTEM). Crystallographic image processing of the obtained HRTEM images from different projections indicates symmetry reduction with respect to P63/m stoichiometric apatites and the presence of threefold symmetry along the c axis. Based on HRTEM observations and the measured Ca/P = 2 ratio we propose a structural model with phosphate-to-carbonate substitution and O vacancies localized along c axis, which explains the observed loss of 63 screw axis parallel, and the shift of mirror plane perpendicular to the c axis. Also, the presence of non-equivalent (010) surfaces has been proven. These results on the atomic structure of bone apatite nanocrystals contribute to the understanding of their biochemically controlled nucleation processes.


Subject(s)
Apatites/chemistry , Bone and Bones/chemistry , Nanoparticles/chemistry , Carbonates/chemistry , Crystallography/methods , Microscopy, Electron, Transmission/methods
11.
J Hazard Mater ; 168(2-3): 1512-20, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19349113

ABSTRACT

Sorption characteristics of bulk soil samples and discrete soil mineral constituents were studied by Cu, Zn and Pb batch sorption experiments and analytical electron microscopy analyses. Copper and zinc sorbed mostly on soil mineral constituents, while lead was associated mainly to soil organic matter. Additionally, the competitive situation resulted in increase of the role of iron oxides in Pb sorption. Close association of iron oxides and silicates resulted in significant change in their sorption capacities for all the studied metals. The alkaline conditions due to the calcite content in one of the studied soil samples resulted in both increased role of precipitation for Pb and Cu and elevated sorption capacity for Cu by discrete mineral particles. Using the analytical electron microscopy analyses the sorption characteristics of metals were supported by particular data. When the methods used in this study are combined, they become an extremely powerful means of getting a deeper insight into the soil-metal interaction.


Subject(s)
Metals, Heavy/chemistry , Soil Pollutants/chemistry , Adsorption , Microscopy, Electron
12.
Chemosphere ; 73(4): 461-9, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18674797

ABSTRACT

Soil mineral phases play a significant role in controlling heavy metal mobility in soils. The effective study of their relation needs the integrated use of several analytical methods. In this study, analytical electron microscopy analyses were combined with sequential chemical extractions on soils spiked with Cu, Zn and Pb. Our aims were to study the metal sorption capacity of soil mineral phases and the effect of presence of iron oxide and carbonate on this property of soil minerals. Copper and Pb were found to be characterized by higher and stronger sorption on the studied samples than Zn. Only the former two metals showed significant differences in their immobilized metal amounts on the studied samples and soil mineral particles. Highest metal amounts were sorbed on the swelling clay mineral particles (smectites and vermiculites), but iron-oxide phases may also have similar lead sorption capacity. Alkaline conditions due to the carbonate content of soils resulted both in increased sorption on the mineral particles for Cu and in enhanced role of precipitation for all the studied metals. On the other hand, the intimate association of phyllosilicates and iron resulted in significant increase in metal sorption capacity of the given particle. The results of sequential extractions could be successfully completed by the analytical electron microscopy analyses for studying the sorption capacity of discrete mineral particles. Their integrated use helps us in better understanding the heavy metal-mineral interactions in soils.


Subject(s)
Copper/chemistry , Lead/chemistry , Soil/analysis , Zinc/chemistry , Adsorption , Metals, Heavy/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...