Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Chem Eng ; 11(2): 109623, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36890876

ABSTRACT

In the context of an EU-wide surveillance system for SARS-CoV-2 in wastewater, recommended by the European Commission, this study aims to provide scientific support to the adequacy of transport and storage conditions of samples both in terms of duration and samples temperature. Three laboratories in Slovenia, Cyprus and Estonia investigated the short-term, one-week, isochronous stability of wastewater samples by RT-qPCR based detection of SARS-CoV-2 genes. The results were tested for statistical significance to determine uncertainty of quantification and shelf-life, at testing temperatures of + 20 °C and - 20 °C, relative to reference at + 4 °C. Samples were collected from three urban wastewater treatment plant influents and analysed respectively for SARS-CoV-2 genes N1, N2 (Laboratory 1), N2, E (Laboratory 2) and N3 (Laboratory 3), with various analytical methods. For a period of 7/8 days at + 20 °C, decreasing trends of measured concentrations were observed for all genes resulting in instability according to the statistical analysis, while at - 20 °C the trend of variation was stable only for N1, N2 (Laboratory 1) and N3 (Laboratory 3). Trends for gene E concentrations at - 20 °C (Laboratory 2) could not be tested statistically for stability because of lack of data. Over a period of just 3 days at + 20 °C, the variation was statistically non-significant indicating stability for genes N1, E and N3 for laboratories 1, 2 and 3, respectively. Nonetheless, the outcome of the study presents evidence to support the choice of the selected temperature at which samples shall be preserved during storage before analysis or transport to the laboratory. The conditions (+4 °C, ∼ few days) chosen for EU wastewater surveillance are in accordance with these results, highlighting the importance of stability testing of environmental samples to determine the short-term analytical uncertainty.

3.
Sci Total Environ ; 818: 151783, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-34801504

ABSTRACT

Environmental DNA (eDNA) metabarcoding (parallel sequencing of DNA/RNA for identification of whole communities within a targeted group) is revolutionizing the field of aquatic biomonitoring. To date, most metabarcoding studies aiming to assess the ecological status of aquatic ecosystems have focused on water eDNA and macroinvertebrate bulk samples. However, the eDNA metabarcoding has also been applied to soft sediment samples, mainly for assessing microbial or meiofaunal biota. Compared to classical methodologies based on manual sorting and morphological identification of benthic taxa, eDNA metabarcoding offers potentially important advantages for assessing the environmental quality of sediments. The methods and protocols utilized for sediment eDNA metabarcoding can vary considerably among studies, and standardization efforts are needed to improve their robustness, comparability and use within regulatory frameworks. Here, we review the available information on eDNA metabarcoding applied to sediment samples, with a focus on sampling, preservation, and DNA extraction steps. We discuss challenges specific to sediment eDNA analysis, including the variety of different sources and states of eDNA and its persistence in the sediment. This paper aims to identify good-practice strategies and facilitate method harmonization for routine use of sediment eDNA in future benthic monitoring.


Subject(s)
DNA, Environmental , Biodiversity , DNA/genetics , DNA Barcoding, Taxonomic , Ecosystem , Environmental Monitoring/methods
4.
Sci Rep ; 10(1): 13478, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32778787

ABSTRACT

Spread of pathogenic microbes and antibiotic-resistant bacteria in health-care settings and public spaces is a serious public health challenge. Materials that prevent solid surface colonization or impede touch-transfer of viable microbes could provide means to decrease pathogen transfer from high-touch surfaces in critical applications. ZnO and Ag nanoparticles have shown great potential in antimicrobial applications. Less is known about nano-enabled surfaces. Here we demonstrate that surfaces coated with nano-ZnO or nano-ZnO/Ag composites are not cytotoxic to human keratinocytes and possess species-selective medium-dependent antibiofilm activity against Escherichia coli, Staphylococcus aureus and Candida albicans. Colonization of nano-ZnO and nano-ZnO/Ag surfaces by E. coli and S. aureus was decreased in static oligotrophic conditions (no planktonic growth). Moderate to no effect was observed for bacterial biofilms in growth medium (supporting exponential growth). Inversely, nano-ZnO surfaces enhanced biofilm formation by C. albicans in oligotrophic conditions. However, enhanced C. albicans biofilm formation on nano-ZnO surfaces was effectively counteracted by the addition of Ag. Possible selective enhancement of biofilm formation by the yeast C. albicans on Zn-enabled surfaces should be taken into account in antimicrobial surface development. Our results also indicated the importance of the use of application-appropriate test conditions and exposure medium in antimicrobial surface testing.


Subject(s)
Biofilms/drug effects , Silver/pharmacology , Zinc Oxide/pharmacology , Anti-Bacterial Agents , Anti-Infective Agents , Bacteria/drug effects , Bacteria/growth & development , Biofilms/growth & development , Candida albicans/growth & development , Escherichia coli/growth & development , Metal Nanoparticles/therapeutic use , Microbial Sensitivity Tests , Nanocomposites/therapeutic use , Silver/metabolism , Staphylococcus aureus/growth & development , Zinc Oxide/metabolism
5.
RSC Adv ; 9(57): 33140-33146, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-35529163

ABSTRACT

The ultraviolet photoelectron spectrum of the [EMIM][B(CN)4] ionic liquid was recorded and analyzed. Together with different ab initio calculation methods, detailed insight into the electronic structure of this simple room temperature ionic liquid is possible. The ion-pair approximation to the liquid electronic structure was not sufficient. Therefore bulk ab initio calculations were performed on a proposed crystal structure. The modelling of bulk electronic spectra is able to explain the experimental electronic structure of the ionic liquid. Most notably, the dispersion corrected PBE calculation (PBE-D3BJ) showed good agreement with the experimental UPS spectrum. The spectra simulated by the B97-D and the BLYP-D3(BJ) functionals were also in agreement with the experimental data. The LDA approximation only provided qualitative agreement while the optB88-vdW and CX-vdW functionals were not good. However, it will be shown that many requirements have to be met in order to accurately describe the electronic structure of this ionic liquid.

6.
RSC Adv ; 8(53): 30298-30304, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-35546846

ABSTRACT

The ultraviolet photoelectron spectrum (UPS) of the [EMIM][BF4] ionic liquid was recorded and analyzed. Together with the gas-phase UPS spectrum of the [EMIM][BF4] vapor and ab initio calculation methods, detailed insight into the electronic structure of this simple ionic liquid is possible. The low binding energy tail in the UPS spectrum is about 7.4 eV, in agreement with previous estimations of the HOMO-LUMO gap of the [EMIM][BF4] ion-pair. The bulk ab initio calculations are able to explain most of the features in the spectrum. However, DFT consistently lacks accuracy in the description of the top of the valence band. The dispersion corrected PBE calculation (PBE-D3) did offer very good agreement with the experimental structure, but the recently-developed vdW-DF functionals C09, optPBE, optB88 and CX were found to offer the best agreement in terms of the electronic structure.

7.
J Phys Condens Matter ; 22(37): 375505, 2010 Sep 22.
Article in English | MEDLINE | ID: mdl-21403201

ABSTRACT

We carried out a combined study of UV-VUV luminescence and resonant x-ray emission from BeO single crystals with incident photon energies in the vicinity of the Be 1s absorption edge. The x-ray emission spectra show that at the Be 1s photoabsorption edge the lattice relaxation processes in the excitation site take place already on the timescale of the radiative decay of the core excitation. Comparison of the x-ray emission and the luminescence spectra indicates that the maximum energy loss of the process of lattice relaxation during the decay of inner-shell holes is similar to the loss that occurs in the self-trapping process of valence excitons. The possible decay channels of core excitations have been discussed and the mechanism for the creation of 5.2 eV luminescence at the photoabsorption resonances has been suggested.


Subject(s)
Beryllium/chemistry , Oxides/chemistry , Quantum Theory , Spectrum Analysis/methods , Ultraviolet Rays , X-Ray Diffraction/methods , Absorption , Electrons , Energy Transfer , Luminescence , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...