Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Photonics ; 10(9): 3275-3282, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37743946

ABSTRACT

It has been observed that achiral nanoparticles, such as flat helices, may be subjected to an optical torque even when illuminated by normally incident linearly polarized light. However, the origin of this fascinating phenomenon has so far remained mostly unexplained. We therefore propose an exhaustive discussion that provides a clear and rigorous explanation for the existence of such a torque. Using multipolar theory and taking into account nonlocal interactions, we find that this torque stems from multipolar pseudochiral responses that generate both spin and orbital angular momenta. We also show that the nature of these peculiar responses makes them particularly dependent on the asymmetry of the particles. By elucidating the origin of this type of torque, this work may prove instrumental for the design of high-performance nano-rotors.

2.
ACS Photonics ; 10(6): 1882-1889, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37363628

ABSTRACT

Reflectivity modulation is a critical feature for applications in telecommunications, 3D imaging and printing, advanced laser machining, or portable displays. Tunable metasurfaces have recently emerged as a promising implementation for miniaturized and high-performance tunable optical components. Commonly, metasurface response tuning is achieved by electro-optical effects. In this work, we demonstrate reflectivity modulation based on a nanostructured, mechanically tunable, metasurface, consisting of an amorphous silicon nanopillar array and a suspended amorphous silicon membrane with integrated electrostatic actuators. With a membrane displacement of only 150 nm, we demonstrate reflectivity modulation by Mie resonance enhanced absorption in the pillar array, leading to a reflectivity contrast ratio of 1:3 over the spectral range from 400-530 nm. With fast, low-power electrostatic actuation and a broadband response in the visible spectrum, this mechanically tunable metasurface reflectivity modulator could enable high frame rate dynamic reflective displays.

3.
Front Plant Sci ; 14: 1140101, 2023.
Article in English | MEDLINE | ID: mdl-37051076

ABSTRACT

To successfully colonize the host, phytopathogens have developed a large repertoire of components to both combat the host plant defense mechanisms and to survive in adverse environmental conditions. Microbial proteases are predicted to be crucial components of these systems. In the present work, we aimed to identify active secreted proteases from the oomycete Aphanomyces euteiches, which causes root rot diseases on legumes. Genome mining and expression analysis highlighted an overrepresentation of microbial tandemly repeated proteases, which are upregulated during host infection. Activity Based Protein Profiling and mass spectrometry (ABPP-MS) on apoplastic fluids isolated from pea roots infected by the pathogen led to the identification of 35 active extracellular microbial proteases, which represents around 30% of the genes expressed encoding serine and cysteine proteases during infection. Notably, eight of the detected active secreted proteases carry an additional C-terminal domain. This study reveals novel active modular extracellular eukaryotic proteases as potential pathogenicity factors in Aphanomyces genus.

4.
Nano Lett ; 23(8): 3362-3368, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37043888

ABSTRACT

We demonstrate a nonlinear plasmonic metasurface that exhibits strongly asymmetric second-harmonic generation: nonlinear scattering is efficient upon excitation in one direction, and it is substantially suppressed when the excitation direction is reversed, thus enabling a diode-like functionality. A significant (approximately 10 dB) extinction ratio of SHG upon opposite excitations is measured experimentally, and those findings are substantiated with full-wave simulations. This effect is achieved by employing a combination of two commonly used metals─aluminum and silver─producing a material composition asymmetry that results in a bianisotropic response of the system, as confirmed by performing homogenization analysis and extracting an effective susceptibility tensor. Finally, we discuss the implications of our results from the more fundamental perspectives of reciprocity and time-reversal asymmetry.

5.
Opt Express ; 30(18): 32215-32229, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36242288

ABSTRACT

We look beyond the standard time-average approach and investigate optical forces in the time domain. The formalism is developed for both the Abraham and Minkowski momenta, which appear to converge in the time domain. We unveil an extremely rich - and by far unexplored - physics associated with the dynamics of the optical forces, which can even attain negative values over short time intervals or produce low frequency dynamics that can excite mechanical oscillations in macroscopic objects under polychromatic illumination. The magnitude of this beating force is tightly linked to the average one. Implications of this work for transient optomechanics are discussed.

6.
J Fungi (Basel) ; 8(1)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35050028

ABSTRACT

The soil-borne oomycete pathogen Aphanomyces euteiches causes devastating root rot diseases in legumes such as pea and alfalfa. The different pathotypes of A. euteiches have been shown to exhibit differential quantitative virulence, but the molecular basis of host adaptation has not yet been clarified. Here, we re-sequenced a pea field reference strain of A. euteiches ATCC201684 with PacBio long-reads and took advantage of the technology to generate the mitochondrial genome. We identified that the secretome of A. euteiches is characterized by a large portfolio of secreted proteases and carbohydrate-active enzymes (CAZymes). We performed Illumina sequencing of four strains of A. euteiches with contrasted specificity to pea or alfalfa and found in different geographical areas. Comparative analysis showed that the core secretome is largely represented by CAZymes and proteases. The specific secretome is mainly composed of a large set of small, secreted proteins (SSP) without any predicted functional domain, suggesting that the legume preference of the pathogen is probably associated with unknown functions. This study forms the basis for further investigations into the mechanisms of interaction of A. euteiches with legumes.

7.
New Phytol ; 233(5): 2232-2248, 2022 03.
Article in English | MEDLINE | ID: mdl-34913494

ABSTRACT

Oomycete plant pathogens secrete effector proteins to promote disease. The damaging soilborne legume pathogen Aphanomyces euteiches harbors a specific repertoire of Small Secreted Protein effectors (AeSSPs), but their biological functions remain unknown. Here we characterize AeSSP1256. The function of AeSSP1256 is investigated by physiological and molecular characterization of Medicago truncatula roots expressing the effector. A potential protein target of AeSSP1256 is identified by yeast-two hybrid, co-immunoprecipitation, and fluorescent resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM) assays, as well as promoter studies and mutant characterization. AeSSP1256 impairs M. truncatula root development and promotes pathogen infection. The effector is localized to the nucleoli rim, triggers nucleoli enlargement and downregulates expression of M. truncatula ribosome-related genes. AeSSP1256 interacts with a functional nucleocytoplasmic plant RNA helicase (MtRH10). AeSSP1256 relocates MtRH10 to the perinucleolar space and hinders its binding to plant RNA. MtRH10 is associated with ribosome-related genes, root development and defense. This work reveals that an oomycete effector targets a plant RNA helicase, possibly to trigger nucleolar stress and thereby promote pathogen infection.


Subject(s)
Aphanomyces , Medicago truncatula , Aphanomyces/physiology , Gene Expression Regulation, Plant , Medicago truncatula/genetics , Medicago truncatula/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , RNA Helicases/genetics , RNA, Plant/metabolism
8.
Opt Express ; 29(15): 24056-24067, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34614658

ABSTRACT

We perform a systematic study showing the evolution of the multipoles along with the spectra for a hybrid metal-dielectric nanoantenna, a Si cylinder and an Ag disk stacked one on top of another, as its dimensions are varied one by one. We broaden our analysis to demonstrate the "magnetic light" at energies above 1 eV by varying the height of the Ag on the Si cylinder and below 1 eV by introducing insulating spacing between them. We also explore the appearance of the anapole state along with some exceptionally narrow spectral features by varying the radius of the Ag disk.

9.
Commun Biol ; 4(1): 181, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33568709

ABSTRACT

Protein-metabolite interactions are of crucial importance for all cellular processes but remain understudied. Here, we applied a biochemical approach named PROMIS, to address the complexity of the protein-small molecule interactome in the model yeast Saccharomyces cerevisiae. By doing so, we provide a unique dataset, which can be queried for interactions between 74 small molecules and 3982 proteins using a user-friendly interface available at https://promis.mpimp-golm.mpg.de/yeastpmi/ . By interpolating PROMIS with the list of predicted protein-metabolite interactions, we provided experimental validation for 225 binding events. Remarkably, of the 74 small molecules co-eluting with proteins, 36 were proteogenic dipeptides. Targeted analysis of a representative dipeptide, Ser-Leu, revealed numerous protein interactors comprising chaperones, proteasomal subunits, and metabolic enzymes. We could further demonstrate that Ser-Leu binding increases activity of a glycolytic enzyme phosphoglycerate kinase (Pgk1). Consistent with the binding analysis, Ser-Leu supplementation leads to the acute metabolic changes and delays timing of a diauxic shift. Supported by the dipeptide accumulation analysis our work attests to the role of Ser-Leu as a metabolic regulator at the interface of protein degradation and central metabolism.


Subject(s)
Energy Metabolism , Phosphoglycerate Kinase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Glycolysis , Metabolome , Metabolomics , Phosphoglycerate Kinase/genetics , Protein Interaction Maps , Proteolysis , Proteome , Proteomics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
10.
Opt Express ; 28(19): 27547-27560, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32988046

ABSTRACT

We analyze the superposition of Cartesian multipoles to reveal the mechanisms underlying the origin of optical forces. We show that a multipolar decomposition approach significantly simplifies the analysis of this problem and leads to a very intuitive explanation of optical forces based on the interference between multipoles. We provide an in-depth analysis of the radiation coming from the object, starting from low-order multipole interactions up to quadrupolar terms. Interestingly, by varying the phase difference between multipoles, the optical force as well as the total radiation directivity can be well controlled. The theory developed in this paper may also serve as a reference for ultra-directional light steering applications.

11.
Opt Express ; 27(26): 38708-38720, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878633

ABSTRACT

The full wave surface integral equation computation of the second harmonic generation (SHG) dynamics for metal spheres and nanorods - presented as multimedia files - is performed to reveal the dynamics of the modes supported by the nanostructure. We demonstrate that the interplay between different modes controls the nonlinear response and that the size-induced redshift of the eigenmodes can be manipulated by adjusting the nanostructure geometry, so that the SHG signal can be boosted at specified frequencies. We show that the SHG radiation is not necessarily quadrupolar in spherical nanoparticles, as it is often assumed. Finally, we introduce an efficient way to reduce the SHG calculation time.

SELECTION OF CITATIONS
SEARCH DETAIL
...