Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732762

ABSTRACT

It has been established that the wild-type Cupriavidus necator B-10646 strain uses saturated fatty acids (SFAs) for growth and polyhydroxyalkanoate (PHA) synthesis. It uses lauric (12:0), myristic (14:0), palmitic (16:0) and stearic (18:0) acids as carbon sources; moreover, the elongation of the C-chain negatively affects the biomass and PHA yields. When bacteria grow on C12 and C14 fatty acids, the total biomass and PHA yields are comparable up to 7.5 g/L and 75%, respectively, which twice exceed the values that occur on longer C16 and C18 acids. Regardless of the type of SFAs, bacteria synthesize poly(3-hydroxybutyrate), which have a reduced crystallinity (Cx from 40 to 57%) and a molecular weight typical for poly(3-hydroxybutyrate) (P(3HB)) (Mw from 289 to 465 kDa), and obtained polymer samples demonstrate melting and degradation temperatures with a gap of about 100 °C. The ability of bacteria to assimilate SFAs opens up the possibility of attracting the synthesis of PHAs on complex fat-containing substrates, including waste.

2.
Int J Mol Sci ; 24(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37834364

ABSTRACT

The synthesis of PHA was first investigated using WFOs obtained from smoked-sprat heads, substandard fresh sprats, and fresh mackerel heads and backbones. All the WFOs ensured the growth of the wild-type strain Cupriavidus necator B-10646 and the synthesis of PHA, regardless of the degree of lipid saturation (from 0.52 to 0.65) and the set and ratio of fatty acids (FA), which was represented by acids with chain lengths from C14 to C24. The bacterial biomass concentration and PHA synthesis were comparable (4.1-4.6 g/L and about 70%) when using WFO obtained from smoked-sprat heads and fresh mackerel, and it was twice as high as the bacterial biomass concentration from the fresh sprat waste. This depended on the type of WFO, the bacteria synthesized P(3HB) homopolymer or P(3HB-co-3HV-co-3HHx) copolymer, which had a lower degree of crystallinity (Cx 71%) and a lower molecular weight (Mn 134 kDa) compared to the P(3HB) (Mn 175-209 kDa and Cx 74-78%) at comparable temperatures (Tmelt and Tdegr of 158-168 °C and 261-284 °C, respectively). The new types of WFO, studied for the first time, are suitable as a carbon substrates for PHA synthesis. The WFOs obtained in the production of canned Baltic sprat and Baltic mackerel can be considered a promising and renewable substrate for PHA biosynthesis.


Subject(s)
Cupriavidus necator , Polyhydroxyalkanoates , Polyhydroxyalkanoates/chemistry , Fish Oils , Bacteria , Fatty Acids
3.
Int J Mol Sci ; 24(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37762383

ABSTRACT

The properties, features of thermal behavior and crystallization of copolymers containing various types of valerate monomers were studied depending on the set and ratio of monomers. We synthesized and studied the properties of three-component copolymers containing unusual monomers 4-hydroxyvalerate (4HV) and 3-hydroxy-4-methylvalerate (3H4MV), in addition to the usual 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) monomers. The results showed that P(3HB-co-3HV-co-4HV) and P(3HB-co-3HV-co-3H4MV) terpolymers tended to increase thermal stability, especially for methylated samples, including an increase in the gap between melting point (Tmelt) and thermal degradation temperature (Tdegr), an increase in the melting point and glass transition temperature, as well as a lower degree of crystallinity (40-46%) compared with P(3HB-co-3HV) (58-66%). The copolymer crystallization kinetics depended on the set and ratio of monomers. For terpolymers during exothermic crystallization, higher rates of spherulite formation (Gmax) were registered, reaching, depending on the ratio of monomers, 1.6-2.0 µm/min, which was several times higher than the Gmax index (0.52 µm/min) for the P(3HB-co-3HV) copolymer. The revealed differences in the thermal properties and crystallization kinetics of terpolymers indicate that they are promising polymers for processing into high quality products from melts.


Subject(s)
Polyhydroxyalkanoates , Polyhydroxyalkanoates/chemistry , Polyesters/chemistry , Valerates , Crystallization , Temperature
4.
Polymers (Basel) ; 15(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37447536

ABSTRACT

The properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(3HB-co-3HHx) copolymers with different ratios of monomers synthesized by the wild-type strain Cupriavidus necator B-10646 on sugars, and an industrial sample from Kaneka synthesized by the recombinant strain C. necator NSDG-ΔfadB1 on soybean oil, were studied in a comparative aspect and in relation to poly(3-hydroxybutyrate) P(3HB). The copolymer samples, regardless of the synthesis conditions or the ratio of monomers, had reduced values of crystallinity degree (50-60%) and weight average molecular weight (415-520 kDa), and increased values of polydispersity (2.8-4.3) compared to P(3HB) (70-76%, 720 kDa, and 2.2). The industrial sample had differences in its thermal behavior, including a lower glass transition temperature (-2.4 °C), two peaks in its crystallization and melting regions, a lower melting point (Tmelt) (112/141 °C), and a more pronounced gap between Tmelt and the temperature of thermal degradation (Tdegr). The process, shape, and size of the spherulites formed during the isothermal crystallization of P(3HB) and P(3HB-co-3HHx) were generally similar, but differed in the maximum growth rate of the spherulites during exothermic crystallization, which was 3.5-3.7 µm/min for P(3HB), and 0.06-1.25 for the P(3HB-co-3HHx) samples. The results from studying the thermal properties and the crystallization mechanism of P(3HB-co-3HHx) copolymers are important for improving the technologies for processing polymer products from melts.

5.
Polymers (Basel) ; 15(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36850288

ABSTRACT

The study addresses the growth of the wild-type strain Cupriavidus necator B-10646 and the synthesis of sulfur-containing polyhydroxyalkanoates (PHA) by this strain on media containing fructose and three different precursors (3-mercaptopropionic acid, 3',3'-dithiodipropionic acid and 3',3'-thiodipropionic acid). By varying the concentration and number of doses of the precursors added into the bacterial culture, it was possible to find conditions that ensure the formation of 3-mercaptopropionate (3MP) monomers from the precursors and their incorporation into the C-chain of poly(3-hydroxybutyrate). A series of P(3HB-co-3MP) copolymer samples with different content of 3MP monomers (from 2.04 to 39.0 mol.%) were synthesized and the physicochemical properties were studied. The effect of 3MP monomers is manifested in a certain decrease in the molecular weight of the samples and an increase in polydispersity. Temperature changes are manifested in the appearance of two peaks in the melting region with different intervals regardless of the 3MP content. The studied P(3HB-co-3MP) samples, regardless of the content of 3MP monomers, are characterized by equalization of the ratio of the amorphous and crystalline phases and have a close degree of crystallinity with a minimum of 42%, = and a maximum of 54%.

6.
Polymers (Basel) ; 14(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36236173

ABSTRACT

Synthesis of P(3HB-co-3HV-co-4HV) copolymers by the wild-type strain Cupriavidus necator B-10646 on fructose or sodium butyrate as the main C-substrate with the addition of γ-valerolactone as a precursor of 3HV and 4HV monomers was studied. Bacterial cells were cultivated in the modes that enabled production of a series of copolymers with molar fractions of 3HV (from 7.3 to 23.4 mol.%) and 4HV (from 1.9 to 4.7 mol.%) with bacterial biomass concentration (8.2 ± 0.2 g/L) and PHA content (80 ± 2%). Using HPLC, DTA, DSC, X-Ray, SEM, and AFM, the physicochemical properties of copolymers and films prepared from them have been investigated as dependent on proportions of monomers. Copolymers are characterized by a reduced degree of crystallinity (Cx 38-49%) molecular weight characteristics Mn (45-87 kDa), and Mw (201-248 kDa) compared with P(3HB). The properties of the films surface of various composition including the porosity and surface roughness were studied. Most of the samples showed a decrease in the average pore area and an increase in their number with a total increase in 3HV and 4HV monomers. The results allow scaling up the productive synthesis of P(3HB-co-3HV-co-4HV) copolymers using Cupriavidus necator B-10646.

7.
Pest Manag Sci ; 78(12): 5444-5455, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36057853

ABSTRACT

BACKGROUND: For the first time, the biological activity of slow-release fungicide formulations for suppressing potato pathogens deposited in a degradable poly-3-hydroxybutyrate/sawdust base has been obtained and investigated. RESULTS: The slow-release fungicide formulations (azoxystrobin, azoxystrobin + mefenoxam, and difenoconazole) were studied in vitro and in vivo in comparison with commercial analogues. In in vitro cultures of phytopathogens, the deposited fungicides showed an inhibitory effect comparable to commercial analogues, limiting the growth of colonies of Phytophthora infestans, Alternaria longipes, Rhizoctonia solani and Fusarium solan (2.0-2.3 times relative to the negative control). In laboratory experiments, the use of deposited fungicides was accompanied by earlier germination and more active growth of potatoes against the background of a decrease in the area of plant damage and an increase in yield. In the field experiment, the deposited fungicides suppressed the development of Phytophthora and Alternariosis in the rhizosphere during the entire growing season and reduced the area of plant damage by pathogens by 10-15%, which is two times less than in the groups of plants treated with commercial preparations. The higher biological activity of the embedded fungicides ensured the maximum number of tubers undamaged by pathogens and the total yield of 22-23 t ha-1 , which exceeded the yields in the groups with commercial fungicides (18.4-20.8 t ha-1 ). CONCLUSION: The slow-release fungicide formulations deposited in a degradable P(3HB)/sawdust base are effective in protecting potatoes from pathogens and increasing yields and have an advantage over commercial counterparts. © 2022 Society of Chemical Industry.


Subject(s)
Fungicides, Industrial , Phytophthora infestans , Solanum tuberosum , Fungicides, Industrial/pharmacology , Strobilurins/pharmacology , Delayed-Action Preparations
8.
Polymers (Basel) ; 14(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36080743

ABSTRACT

Three-component slow-release fungicide formulations with different modes of action of the active ingredients for suppressing potato pathogens were constructed for the first time. The difenoconazole, mefenoxam, prothioconazole, and azoxystrobin fungicides were embedded in the degradable polymer P(3HB)/birch wood flour blend and examined using SEM, IR spectroscopy, X-ray analysis, DTA, and DSC. Results showed that no chemical bonds were established between the components and that they were physical mixtures that had a lower degree of crystallinity compared to the initial P(3HB), which suggested different crystallization kinetics in the mixtures. The degradation behavior of the experimental formulations was investigated in laboratory micro-ecosystems with pre-characterized field soil. The slow-release fungicide formulations were prolonged-action forms with a half-life of at least 50-60 d, enabling gradual and sustained delivery of the active ingredients to plants. All slow-release fungicide formulations had a strong inhibitory effect on the most common and harmful potato pathogens (Phytophthorainfestans, Alternarialongipes, Rhizoctoniasolani, and Fusariumsolani).

9.
Bioengineering (Basel) ; 9(4)2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35447714

ABSTRACT

To increase the availability and expand the raw material base, the production of polyhydroxyalkanoates (PHA) by the wild strain Cupriavidus necator B-10646 on hydrolysates of sugar beet molasses was studied. The hydrolysis of molasses was carried out using ß-fructofuranosidase, which provides a high conversion of sucrose (88.9%) to hexoses. We showed the necessity to adjust the chemical composition of molasses hydrolysate to balance with the physiological needs of C. necator B-10646 and reduce excess sugars and nitrogen and eliminate phosphorus deficiency. The modes of cultivation of bacteria on diluted hydrolyzed molasses with the controlled feeding of phosphorus and glucose were implemented. Depending on the ratio of sugars introduced into the bacterial culture due to the molasses hydrolysate and glucose additions, the bacterial biomass concentration was obtained from 20-25 to 80-85 g/L with a polymer content up to 80%. The hydrolysates of molasses containing trace amounts of propionate and valerate were used to synthesize a P(3HB-co-3HV) copolymer with minor inclusions of 3-hydroxyvlaerate monomers. The introduction of precursors into the medium ensured the synthesis of copolymers with reduced values of the degree of crystallinity, containing, in addition to 3HB, monomers 3HB, 4HB, or 3HHx in an amount of 12-16 mol.%.

10.
Nanomaterials (Basel) ; 12(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35055211

ABSTRACT

The synthesis of bacterial cellulose (BC) by Komagataeibacter xylinus strain B-12068 was investigated on various C-substrates, under submerged conditions with stirring and in static surface cultures. We implemented the synthesis of BC on glycerol, glucose, beet molasses, sprat oil, and a mixture of glucose with sunflower oil. The most productive process was obtained during the production of inoculum in submerged culture and subsequent growth of large BC films (up to 0.2 m2 and more) in a static surface culture. The highest productivity of the BC synthesis process was obtained with the growth of bacteria on molasses and glycerol, 1.20 and 1.45 g/L per day, respectively. We obtained BC composites with silver nanoparticles (BC/AgNPs) and antibacterial drugs (chlorhexidine, baneocin, cefotaxime, and doripenem), and investigated the structure, physicochemical, and mechanical properties of composites. The disc-diffusion method showed pronounced antibacterial activity of BC composites against E. coli ATCC 25922 and S. aureus ATCC 25923.

11.
Environ Sci Pollut Res Int ; 29(14): 20249-20264, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34727312

ABSTRACT

The efficacy of slow-release formulations of tribenuron-methyl (TBM) embedded in the matrix of degradable poly(3-hydroxybutyrate) blended with birch wood flour [polymer/wood flour/herbicide 50/30/20 wt.%] was compared with the efficacy of TBM as the active ingredient of the Mortira commercial formulation, which was applied as post-emergence spray to treat spring wheat cv. Novosibirskaya 15. The study was conducted in Central Siberia (in the environs of the city of Krasnoyarsk, Russia) from May to August 2020. The biological efficacy of the embedded TBM was 92.3%, which was considerably higher than the biological efficacy of the Mortira formulation used as the post-emergence spray (15.4%). The embedding of TBM into degradable blended matrix enabled long-duration functioning of this unstable herbicide in soil. The sensitivity of weed plants to TBM differed depending on the species. TBM was more effective against A. retroflexus and A. blitoides, which were killed at an earlier stage, than against C. album and G. aparine, whose percentage increased in the earlier stage and which were controlled by the herbicide less effectively and at later stages. On the plot treated with the embedded herbicide, the parameters of the wheat yield structure were the best, and the total yield was the highest: 3360 ± 40 kg/ha versus 3250 ± 50 kg/ha in the group of plants sprayed with the Mortira formulation. The grain produced in all groups was of high quality and was classified as Grade 1 food grain. The highest quality parameters (grain hectoliter mass, gluten, and protein contents) were obtained in the group of plants treated with the embedded herbicide. The study of the embedded TBM confirmed the high efficacy of the experimental formulation.


Subject(s)
Herbicides , Arylsulfonates , Delayed-Action Preparations/chemistry , Herbicides/chemistry , Triticum/metabolism
12.
Polymers (Basel) ; 13(18)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34578042

ABSTRACT

The bacterial strain isolated from soil was identified as Cupriavidus necator IBP/SFU-1 and investigated as a PHA producer. The strain was found to be able to grow and synthesize PHAs under autotrophic conditions and showed a broad organotrophic potential towards different carbon sources: sugars, glycerol, fatty acids, and plant oils. The highest cell concentrations (7-8 g/L) and PHA contents were produced from oleic acid (78%), fructose, glucose, and palm oil (over 80%). The type of the carbon source influenced the PHA chemical composition and properties: when grown on oleic acid, the strain synthesized the P(3HB-co-3HV) copolymer; on plant oils, the P(3HB-co-3HV-co-3HHx) terpolymer, and on the other substrates, the P(3HB) homopolymer. The type of the carbon source influenced molecular-weight properties of PHAs: P(3HB) synthesized under autotrophic growth conditions, from CO2, had the highest number-average (290 ± 15 kDa) and weight-average (850 ± 25 kDa) molecular weights and the lowest polydispersity (2.9 ± 0.2); polymers synthesized from organic carbon sources showed increased polydispersity and reduced molecular weight. The carbon source was not found to affect the degree of crystallinity and thermal properties of the PHAs. The type of the carbon source determined not only PHA composition and molecular weight but also surface microstructure and porosity of the polymer films. The new strain can be recommended as a promising P(3HB) producer from palm oil, oleic acid, and sugars (fructose and glucose) and as a producer of P(3HB-co-3HV) from oleic acid and P(3HB-co-3HV-co-3HHx) from palm oil.

13.
Polymers (Basel) ; 14(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35012158

ABSTRACT

One of the major challenges in PHA biotechnology is optimization of biotechnological processes of the entire synthesis, mainly by using new inexpensive carbon substrates. A promising substrate for PHA synthesis may be the sugars extracted from the Jerusalem artichoke. In the present study, hydrolysates of Jerusalem artichoke (JA) tubers and vegetative biomass were produced and used as carbon substrate for PHA synthesis. The hydrolysis procedure (the combination of aqueous extraction and acid hydrolysis, process temperature and duration) influenced the content of reducing substances (RS), monosaccharide contents, and the fructose/glucose ratio. All types of hydrolysates tested as substrates for cultivation of three strains-C. necator B-10646 and R. eutropha B 5786 and B 8562-were suitable for PHA synthesis, producing different biomass concentrations and polymer contents. The most productive process, conducted in 12-L fermenters, was achieved on hydrolysates of JA tubers (X = 66.9 g/L, 82% PHA) and vegetative biomass (55.1 g/L and 62% PHA) produced by aqueous extraction of sugars at 80 °C followed by acid hydrolysis at 60 °C, using the most productive strain, C. necator B-10646. The effects of JA hydrolysates on physicochemical properties of PHAs were studied for the first time. P(3HB) specimens synthesized from the JA hydrolysates, regardless of the source (tubers or vegetative biomass), hydrolysis conditions, and PHA producing strain employed, exhibited the 100-120 °C difference between the Tmelt and Tdegr, prevailing of the crystalline phase over the amorphous one (Cx between 69 and 75%), and variations in weight average molecular weight (409-480) kDa. Supplementation of the culture medium of C. necator B-10646 grown on JA hydrolysates with potassium valerate and ε-caprolactone resulted in the synthesis of P(3HB-co-3HV) and P(3HB-co-4HB) copolymers that had decreased degrees of crystallinity and molecular weights, which influenced the porosity and surface roughness of polymer films prepared from them. The study shows that JA hydrolysates used as carbon source enabled productive synthesis of PHAs, comparable to synthesis from pure sugars. The next step is to scale up PHA synthesis from JA hydrolysates and conduct the feasibility study. The present study contributes to the solution of the critical problem of PHA biotechnology-finding widely available and inexpensive substrates.

14.
Pest Manag Sci ; 76(5): 1772-1785, 2020 May.
Article in English | MEDLINE | ID: mdl-31785186

ABSTRACT

BACKGROUND: The purpose of the present study was to develop ecofriendly herbicide formulations. Its main aim was to develop and investigate slow-release formulations of herbicides (metribuzin, tribenuron-methyl, and fenoxaprop-P-ethyl) of different structure, solubility, and specificity, which were loaded into a degradable matrix of poly-3-hydroxybutyrate (P(3HB)) blended with available natural materials (peat, clay, and wood flour). RESULTS: Differences in the structure and physicochemical properties of the formulations were studied depending on the type of the matrix. Herbicide release and accumulation in soil were associated with the solubility of the herbicide. Fourier-transform infrared spectroscopy showed that no chemical bonds were formed between the components in the experimental formulations. Degradation of the formulations in agro-transformed soil in laboratory conditions was chiefly influenced by the shape of the specimens (granules or pellets) while the effect of the type of filler (peat, clay, or wood flour) was insignificant. The use of granules enabled more rapid accumulation of the herbicides in soil: their peak concentrations were reached after 3 weeks of incubation while the concentrations of the herbicides released from the pellets were the highest after 5-7 weeks. Loading of the herbicides into the polymer matrix composed of the slowly degraded P(3HB) and natural materials enabled both sustained function of the formulations in soil (lasting between 1.5 and ≥3 months) and stable activity of the otherwise rapidly inactivated herbicides such as tribenuron-methyl and fenoxaprop-P-ethyl. CONCLUSION: The experimental herbicide formulations enabled slow release of the active ingredients to soil. © 2019 Society of Chemical Industry.


Subject(s)
Herbicides/chemistry , Delayed-Action Preparations , Hydroxybutyrates , Polyesters , Soil
15.
Pest Manag Sci ; 73(5): 925-935, 2017 May.
Article in English | MEDLINE | ID: mdl-27447847

ABSTRACT

BACKGROUND: An important line of research is the development of a new generation of formulations with targeted and controlled release of the pesticide, using matrices made from biodegradable materials. In this study, slow-release formulations of the fungicide tebuconazole (TEB) have been prepared by embedding it into the matrix of poly-3-hydroxybutyrate (P3HB) in the form of films, microgranules and pellets. RESULTS: The average rates of P3HB degradation were determined by the geometry of the formulation, reaching, for 63 days, 0.095-0.116, 0.081-0.083 and 0.030-0.055 mg day-1 for films, microgranules and pellets respectively. The fungicidal activity of P3HB/TEB against the plant pathogen Fusarium moniliforme was compared with that of the commercial formulation Raxil Ultra. A pronounced fungicidal effect of the experimental P3HB/TEB formulations was observed in 2-4 weeks after application, and it was retained for 8 weeks, without affecting significantly the development of soil aboriginal microflora. CONCLUSION: TEB release can be regulated by the process employed to fabricate the formulation and the fungicide loading, and the TEB accumulates in the soil gradually, as the polymer is degraded. The experimental forms of TEB embedded in the slowly degraded P3HB can be used as a basis for developing slow-release fungicide formulations. © 2016 Society of Chemical Industry.


Subject(s)
Ecosystem , Fusarium/drug effects , Fusarium/growth & development , Hydroxybutyrates/chemistry , Polyesters/chemistry , Soil Microbiology , Triazoles/chemistry , Triazoles/pharmacology , Drug Carriers/chemistry , Drug Carriers/metabolism , Drug Compounding , Drug Liberation , Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Hydroxybutyrates/metabolism , Polyesters/metabolism
16.
J Environ Sci Health B ; 51(2): 113-125, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26621217

ABSTRACT

Polymer poly(3-hydroxybutyrate) [P(3HB)] has been used as a matrix in slow-release formulations of the herbicide metribuzin (MET). Physical P(3HB)/MET mixtures in the form of solutions, powders, and emulsions were used to construct different metribuzin formulations (films, granules, pellets, and microparticles). SEM, X-Ray, and DSC proved the stability of these formulations incubated in sterile water in vitro for long periods of time (up to 49 days). Metribuzin release from the polymer matrix has been also studied. By varying the shape of formulations (microparticles, granules, films, and pellets), we were able to control the release time of metribuzin, increasing or decreasing it.

17.
Bioresour Technol ; 146: 215-222, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23934338

ABSTRACT

Synthesis of polyhydroxyalkanoates (PHAs) by a new strain of Cupriavidus - Cupriavidus eutrophus B-10646 - was investigated under autotrophic growth conditions. Under chemostat, at the specific flow rate D=0.1h(-1), on sole carbon substrate (CO2), with nitrogen, sulfur, phosphorus, potassium, and manganese used as growth limiting elements, the highest poly(3-hydroxybutyrate) [P(3HB)] yields were obtained under nitrogen deficiency. In batch autotrophic culture, in the fermenter with oxygen mass transfer coefficient 0.460 h(-1), P(3HB) yields reached 85% of dry cell weight (DCW) and DCW reached 50 g/l. Concentrations of supplementary PHA precursor substrates (valerate, hexanoate, γ-butyrolactone) and culture conditions were varied to produce, for the first time under autotrophic growth conditions, PHA ter- and tetra-polymers with widely varying major fractions of 3-hydroxybutyrate, 4-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate monomer units. Investigation of the high-purity PHA specimens showed significant differences in their physicochemical and physicomechanical properties.


Subject(s)
Carbon Dioxide/chemistry , Clostridium beijerinckii/metabolism , Fermentation , Hydrogen/chemistry , Polyhydroxyalkanoates/chemistry , Polymers , 3-Hydroxybutyric Acid/chemistry , Biodegradation, Environmental , Bioreactors , Carbon/chemistry , Crystallization , Gases , Oxygen/chemistry , Polymers/chemistry , Refuse Disposal/methods , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...