Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Mol Ther ; 32(5): 1344-1358, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38454606

ABSTRACT

Effective delivery of mRNA or small molecule drugs to the brain is a significant challenge in developing treatment for acute ischemic stroke (AIS). To address the problem, we have developed targeted nanomedicine to increase drug concentrations in endothelial cells of the blood-brain barrier (BBB) of the injured brain. Inflammation during ischemic stroke causes continuous neuronal death and an increase in the infarct volume. To enable targeted delivery to the inflamed BBB, we conjugated lipid nanocarriers (NCs) with antibodies that bind cell adhesion molecules expressed at the BBB. In the transient middle cerebral artery occlusion mouse model, NCs targeted to vascular cellular adhesion molecule-1 (VCAM) achieved the highest level of brain delivery, nearly two orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles with luciferase-encoding mRNA and Cre-recombinase showed selective expression in the ischemic brain. Anti-inflammatory drugs administered intravenously after ischemic stroke reduced cerebral infarct volume by 62% (interleukin-10 mRNA) or 35% (dexamethasone) only when they were encapsulated in VCAM-targeted NCs. Thus, VCAM-targeted lipid NCs represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS.


Subject(s)
Blood-Brain Barrier , Disease Models, Animal , Ischemic Stroke , Liposomes , Nanoparticles , Vascular Cell Adhesion Molecule-1 , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Animals , Mice , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Nanoparticles/chemistry , Ischemic Stroke/metabolism , Ischemic Stroke/drug therapy , Lipids/chemistry , Drug Delivery Systems/methods , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Humans
2.
bioRxiv ; 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37398465

ABSTRACT

After more than 100 failed drug trials for acute ischemic stroke (AIS), one of the most commonly cited reasons for the failure has been that drugs achieve very low concentrations in the at-risk penumbra. To address this problem, here we employ nanotechnology to significantly enhance drug concentration in the penumbra's blood-brain barrier (BBB), whose increased permeability in AIS has long been hypothesized to kill neurons by exposing them to toxic plasma proteins. To devise drug-loaded nanocarriers targeted to the BBB, we conjugated them with antibodies that bind to various cell adhesion molecules on the BBB endothelium. In the transient middle cerebral artery occlusion (tMCAO) mouse model, nanocarriers targeted with VCAM antibodies achieved the highest level of brain delivery, nearly 2 orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles loaded with either a small molecule drug (dexamethasone) or mRNA (encoding IL-10) reduced cerebral infarct volume by 35% or 73%, respectively, and both significantly lowered mortality rates. In contrast, the drugs delivered without the nanocarriers had no effect on AIS outcomes. Thus, VCAM-targeted lipid nanoparticles represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS. Graphical abstract: Acute ischemic stroke induces upregulation of VCAM. We specifically targeted upregulated VCAM in the injured region of the brain with drug- or mRNA-loaded targeted nanocarriers. Nanocarriers targeted with VCAM antibodies achieved the highest brain delivery, nearly orders of magnitude higher than untargeted ones. VCAM-targeted nanocarriers loaded with dexamethasone and mRNA encoding IL-10 reduced infarct volume by 35% and 73%, respectively, and improved survival rates.

3.
ACS Nano ; 17(14): 13121-13136, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37432926

ABSTRACT

Ex vivo-loaded white blood cells (WBC) can transfer cargo to pathological foci in the central nervous system (CNS). Here we tested affinity ligand driven in vivo loading of WBC in order to bypass the need for ex vivo WBC manipulation. We used a mouse model of acute brain inflammation caused by local injection of tumor necrosis factor alpha (TNF-α). We intravenously injected nanoparticles targeted to intercellular adhesion molecule 1 (anti-ICAM/NP). We found that (A) at 2 h, >20% of anti-ICAM/NP were localized to the lungs; (B) of the anti-ICAM/NP in the lungs >90% were associated with leukocytes; (C) at 6 and 22 h, anti-ICAM/NP pulmonary uptake decreased; (D) anti-ICAM/NP uptake in brain increased up to 5-fold in this time interval, concomitantly with migration of WBCs into the injured brain. Intravital microscopy confirmed transport of anti-ICAM/NP beyond the blood-brain barrier and flow cytometry demonstrated complete association of NP with WBC in the brain (98%). Dexamethasone-loaded anti-ICAM/liposomes abrogated brain edema in this model and promoted anti-inflammatory M2 polarization of macrophages in the brain. In vivo targeted loading of WBC in the intravascular pool may provide advantages of coopting WBC predisposed to natural rapid mobilization from the lungs to the brain, connected directly via conduit vessels.


Subject(s)
Drug Delivery Systems , Lung , Mice , Animals , Lung/metabolism , Brain/metabolism , Liposomes/metabolism , Leukocytes/metabolism , Intercellular Adhesion Molecule-1/metabolism
4.
Nat Nanotechnol ; 17(1): 86-97, 2022 01.
Article in English | MEDLINE | ID: mdl-34795440

ABSTRACT

This study shows that the supramolecular arrangement of proteins in nanoparticle structures predicts nanoparticle accumulation in neutrophils in acute lung inflammation (ALI). We observed homing to inflamed lungs for a variety of nanoparticles with agglutinated protein (NAPs), defined by arrangement of protein in or on the nanoparticles via hydrophobic interactions, crosslinking and electrostatic interactions. Nanoparticles with symmetric protein arrangement (for example, viral capsids) had no selectivity for inflamed lungs. Flow cytometry and immunohistochemistry showed NAPs have tropism for pulmonary neutrophils. Protein-conjugated liposomes were engineered to recapitulate NAP tropism for pulmonary neutrophils. NAP uptake in neutrophils was shown to depend on complement opsonization. We demonstrate diagnostic imaging of ALI with NAPs; show NAP tropism for inflamed human donor lungs; and show that NAPs can remediate pulmonary oedema in ALI. This work demonstrates that structure-dependent tropism for neutrophils drives NAPs to inflamed lungs and shows NAPs can detect and treat ALI.


Subject(s)
Inflammation/pathology , Lung/pathology , Nanoparticles/chemistry , Neutrophils/pathology , Proteins/chemistry , Acute Disease , Agglutination/drug effects , Animals , Antibodies/pharmacology , Cross-Linking Reagents/chemistry , Dextrans/chemistry , Humans , Lipopolysaccharides , Liposomes , Lung/diagnostic imaging , Male , Mice, Inbred C57BL , Muramidase/metabolism , Neutrophils/drug effects , Opsonin Proteins/metabolism , Static Electricity , Tissue Distribution/drug effects , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed
5.
J Control Release ; 344: 50-61, 2022 04.
Article in English | MEDLINE | ID: mdl-34953981

ABSTRACT

Current nucleoside-modified RNA lipid nanoparticle (modmRNA-LNP) technology has successfully paved the way for the highest clinical efficacy data from next-generation vaccinations against SARS-CoV-2 during the COVID-19 pandemic. However, such modmRNA-LNP technology has not been characterized in common pre-existing inflammatory or immune-challenged conditions, raising the risk of adverse clinical effects when administering modmRNA-LNPs in such cases. Herein, we induce an acute-inflammation model in mice with lipopolysaccharide (LPS) intratracheally (IT), 1 mg kg-1, or intravenously (IV), 2 mg kg-1, and then IV administer modmRNA-LNP, 0.32 mg kg-1, after 4 h, and screen for inflammatory markers, such as pro-inflammatory cytokines. ModmRNA-LNP at this dose caused no significant elevation of cytokine levels in naive mice. In contrast, shortly after LPS immune stimulation, modmRNA-LNP enhanced inflammatory cytokine responses, Interleukin-6 (IL-6) in serum and Macrophage Inflammatory Protein 2 (MIP-2) in liver significantly. Our report identifies this phenomenon as inflammation exacerbation (IE), which was proven to be specific to the LNP, acting independent of mRNA cargo, and was demonstrated to be time- and dose-dependent. Macrophage depletion as well as TLR3 -/- and TLR4-/- knockout mouse studies revealed macrophages were the immune cells involved or responsible for IE. Finally, we show that pretreatment with anti-inflammatory drugs, such as corticosteroids, can partially alleviate IE response in mice. Our findings characterize the importance of LNP-mediated IE phenomena in gram negative bacterial inflammation, however, the generalizability of modmRNA-LNP in other forms of chronic or acute inflammatory and immune contexts needs to be addressed.


Subject(s)
COVID-19 , Nanoparticles , Animals , Humans , Inflammation , Lipopolysaccharides , Liposomes , Mice , Pandemics , RNA, Messenger/genetics , SARS-CoV-2
6.
Adv Drug Deliv Rev ; 157: 96-117, 2020.
Article in English | MEDLINE | ID: mdl-32579890

ABSTRACT

The bloodstream is the main transporting pathway for drug delivery systems (DDS) from the site of administration to the intended site of action. In many cases, components of the vascular system represent therapeutic targets. Endothelial cells, which line the luminal surface of the vasculature, play a tripartite role of the key target, barrier, or victim of nanomedicines in the bloodstream. Circulating DDS may accumulate in the vascular areas of interest and in off-target areas via mechanisms bypassing specific molecular recognition, but using ligands of specific vascular determinant molecules enables a degree of precision, efficacy, and specificity of delivery unattainable by non-affinity DDS. Three decades of research efforts have focused on specific vascular targeting, which have yielded a multitude of DDS, many of which are currently undergoing a translational phase of development for biomedical applications, including interventions in the cardiovascular, pulmonary, and central nervous systems, regulation of endothelial functions, host defense, and permeation of vascular barriers. We discuss the design of endothelial-targeted nanocarriers, factors underlying their interactions with cells and tissues, and describe examples of their investigational use in models of acute vascular inflammation with an eye on translational challenges.


Subject(s)
Drug Delivery Systems , Endothelium, Vascular/metabolism , Vascular Diseases/drug therapy , Animals , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Humans , Inflammation/drug therapy , Nanomedicine , Nanoparticles
7.
Proc Natl Acad Sci U S A ; 117(7): 3405-3414, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32005712

ABSTRACT

Drug targeting to inflammatory brain pathologies such as stroke and traumatic brain injury remains an elusive goal. Using a mouse model of acute brain inflammation induced by local tumor necrosis factor alpha (TNFα), we found that uptake of intravenously injected antibody to vascular cell adhesion molecule 1 (anti-VCAM) in the inflamed brain is >10-fold greater than antibodies to transferrin receptor-1 and intercellular adhesion molecule 1 (TfR-1 and ICAM-1). Furthermore, uptake of anti-VCAM/liposomes exceeded that of anti-TfR and anti-ICAM counterparts by ∼27- and ∼8-fold, respectively, achieving brain/blood ratio >300-fold higher than that of immunoglobulin G/liposomes. Single-photon emission computed tomography imaging affirmed specific anti-VCAM/liposome targeting to inflamed brain in mice. Intravital microscopy via cranial window and flow cytometry showed that in the inflamed brain anti-VCAM/liposomes bind to endothelium, not to leukocytes. Anti-VCAM/LNP selectively accumulated in the inflamed brain, providing de novo expression of proteins encoded by cargo messenger RNA (mRNA). Anti-VCAM/LNP-mRNA mediated expression of thrombomodulin (a natural endothelial inhibitor of thrombosis, inflammation, and vascular leakage) and alleviated TNFα-induced brain edema. Thus VCAM-directed nanocarriers provide a platform for cerebrovascular targeting to inflamed brain, with the goal of normalizing the integrity of the blood-brain barrier, thus benefiting numerous brain pathologies.


Subject(s)
Antibodies/administration & dosage , Blood-Brain Barrier/drug effects , Encephalitis/drug therapy , Endothelium, Vascular/drug effects , Nanomedicine/methods , Animals , Blood-Brain Barrier/immunology , Encephalitis/genetics , Encephalitis/immunology , Endothelium, Vascular/immunology , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/immunology , Mice , Receptors, Transferrin/genetics , Receptors, Transferrin/immunology , Thrombomodulin/genetics , Thrombomodulin/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/immunology
8.
ACS Nano ; 13(7): 7627-7643, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31194909

ABSTRACT

The vasculature is an essential component of the circulatory system that plays a vital role in the development, homeostasis, and disease of various organs in the human body. The ability to emulate the architecture and transport function of blood vessels in the integrated context of their associated organs represents an important requirement for studying a wide range of physiological processes. Traditional in vitro models of the vasculature, however, largely fail to offer such capabilities. Here we combine microfluidic three-dimensional (3D) cell culture with the principle of vasculogenic self-assembly to engineer perfusable 3D microvascular beds in vitro. Our system is created in a micropatterned hydrogel construct housed in an elastomeric microdevice that enables coculture of primary human vascular endothelial cells and fibroblasts to achieve de novo formation, anastomosis, and controlled perfusion of 3D vascular networks. An open-top chamber design adopted in this hybrid platform also makes it possible to integrate the microengineered 3D vasculature with other cell types to recapitulate organ-specific cellular heterogeneity and structural organization of vascularized human tissues. Using these capabilities, we developed stem cell-derived microphysiological models of vascularized human adipose tissue and the blood-retinal barrier. Our approach was also leveraged to construct a 3D organotypic model of vascularized human lung adenocarcinoma as a high-content drug screening platform to simulate intravascular delivery, tumor-killing effects, and vascular toxicity of a clinical chemotherapeutic agent. Furthermore, we demonstrated the potential of our platform for applications in nanomedicine by creating microengineered models of vascular inflammation to evaluate a nanoengineered drug delivery system based on active targeting liposomal nanocarriers. These results represent a significant improvement in our ability to model the complexity of native human tissues and may provide a basis for developing predictive preclinical models for biopharmaceutical applications.


Subject(s)
Adenocarcinoma of Lung/pathology , Cell Culture Techniques , Cell Engineering , Endothelial Cells/cytology , Fibroblasts/cytology , Microfluidic Analytical Techniques , Adenocarcinoma of Lung/blood supply , Humans , Hydrogels/chemistry , Microcirculation
9.
J Control Release ; 301: 54-61, 2019 05 10.
Article in English | MEDLINE | ID: mdl-30871995

ABSTRACT

New advances in intra-arterial (IA) catheters offer clinically proven local interventions in the brain. Here we tested the effect of combining local IA delivery and vascular immunotargeting. Microinjection of tumor necrosis factor alpha (TNFα) in the brain parenchyma causes cerebral overexpression of Inter-Cellular Adhesion Molecule-1 (ICAM-1) in mice. Systemic intravenous injection of ICAM-1 antibody (anti-ICAM-1) and anti-ICAM-1/liposomes provided nearly an order of magnitude higher uptake in the inflamed vs normal brain (from ~0.1 to 0.8%ID/g for liposomes). Local injection of anti-ICAM-1 and anti-ICAM-1/liposomes via carotid artery catheter provided an additional respective 2-fold and 5-fold elevation of uptake in the inflamed brain vs levels attained by IV injection. The uptake in the inflamed brain of respective untargeted IgG counterparts was markedly lower (e.g., uptake of anti-ICAM-1/liposomes was 100-fold higher vs IgG/liposomes). These data affirm the specificity of the combined effect of the first pass and immunotargeting. Intravital real-time microscopy via cranial window revealed that anti-ICAM-1/liposomes, but not IgG/liposomes bind to the lumen of blood vessels in the inflamed brain within minutes after injection. This straightforward framework provides the basis for translational efforts towards local vascular drug targeting to the brain.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Brain/metabolism , Encephalitis/metabolism , Intercellular Adhesion Molecule-1/immunology , Animals , Antibodies, Monoclonal/pharmacokinetics , Biological Transport , Brain/blood supply , Encephalitis/chemically induced , Liposomes , Lung/metabolism , Male , Mice, Inbred C57BL , Nanostructures/administration & dosage , Polystyrenes/administration & dosage , Polystyrenes/pharmacokinetics , Tumor Necrosis Factor-alpha
10.
J Control Release ; 291: 106-115, 2018 12 10.
Article in English | MEDLINE | ID: mdl-30336167

ABSTRACT

Systemic administration of lipid nanoparticle (LNP)-encapsulated messenger RNA (mRNA) leads predominantly to hepatic uptake and expression. Here, we conjugated nucleoside-modified mRNA-LNPs with antibodies (Abs) specific to vascular cell adhesion molecule, PECAM-1. Systemic (intravenous) administration of Ab/LNP-mRNAs resulted in profound inhibition of hepatic uptake concomitantly with ~200-fold and 25-fold elevation of mRNA delivery and protein expression in the lungs compared to non-targeted counterparts. Unlike hepatic delivery of LNP-mRNA, Ab/LNP-mRNA is independent of apolipoprotein E. Vascular re-targeting of mRNA represents a promising, powerful, and unique approach for novel experimental and clinical interventions in organs of interest other than liver.


Subject(s)
Apolipoproteins E/metabolism , Drug Delivery Systems , Endothelium, Vascular/metabolism , Nanoparticles/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , RNA, Messenger/administration & dosage , Administration, Intravenous , Animals , Cell Line , Drug Carriers/metabolism , Drug Delivery Systems/methods , Human Umbilical Vein Endothelial Cells , Humans , Immunoconjugates/metabolism , Mice, Inbred C57BL , RNA, Messenger/pharmacokinetics , Tissue Distribution
11.
Biomaterials ; 185: 348-359, 2018 12.
Article in English | MEDLINE | ID: mdl-30273834

ABSTRACT

One of the goals of nanomedicine is targeted delivery of therapeutic enzymes to the sub-cellular compartments where their action is needed. Endothelial caveolae-derived endosomes represent an important yet challenging destination for targeting, in part due to smaller size of the entry aperture of caveolae (ca. 30-50 nm). Here, we designed modular, multi-molecular, ferritin-based nanocarriers with uniform size (20 nm diameter) for easy drug-loading and targeted delivery of enzymatic cargo to these specific vesicles. These nanocarriers targeted to caveolar Plasmalemmal Vesicle-Associated Protein (Plvap) deliver superoxide dismutase (SOD) into endosomes in endothelial cells, the specific site of influx of superoxide mediating by such pro-inflammatory signaling as some cytokines and lipopolysaccharide (LPS). Cell studies showed efficient internalization of Plvap-targeted SOD-loaded nanocarriers followed by dissociation from caveolin-containing vesicles and intracellular transport to endosomes. The nanocarriers had a profound protective anti-inflammatory effect in an animal model of LPS-induced inflammation, in agreement with the characteristics of their endothelial uptake and intracellular transport, indicating that these novel, targeted nanocarriers provide an advantageous platform for caveolae-dependent delivery of biotherapeutics.


Subject(s)
Caveolae/metabolism , Drug Carriers/metabolism , Ferritins/metabolism , Nanoparticles/metabolism , Superoxide Dismutase/administration & dosage , Animals , Archaeal Proteins/metabolism , Archaeoglobus fulgidus/metabolism , Cell Line , Drug Delivery Systems , Immunoconjugates/metabolism , Male , Mice , Mice, Inbred C57BL , Superoxide Dismutase/pharmacokinetics
12.
Nat Commun ; 9(1): 2684, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29992966

ABSTRACT

Drug delivery by nanocarriers (NCs) has long been stymied by dominant liver uptake and limited target organ deposition, even when NCs are targeted using affinity moieties. Here we report a universal solution: red blood cell (RBC)-hitchhiking (RH), in which NCs adsorbed onto the RBCs transfer from RBCs to the first organ downstream of the intravascular injection. RH improves delivery for a wide range of NCs and even viral vectors. For example, RH injected intravenously increases liposome uptake in the first downstream organ, lungs, by ~40-fold compared with free NCs. Intra-carotid artery injection of RH NCs delivers >10% of the injected NC dose to the brain, ~10× higher than that achieved with affinity moieties. Further, RH works in mice, pigs, and ex vivo human lungs without causing RBC or end-organ toxicities. Thus, RH is a clinically translatable platform technology poised to augment drug delivery in acute lung disease, stroke, and several other diseases.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems/methods , Erythrocytes/chemistry , Nanoparticles/chemistry , Adsorption , Animals , Drug Carriers/administration & dosage , Drug Carriers/pharmacokinetics , Humans , Lung/metabolism , Lung Diseases/metabolism , Lung Diseases/therapy , Mice, Inbred C57BL , Nanoparticles/administration & dosage , Rats , Swine
13.
Adv Mater ; 30(32): e1802373, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29956381

ABSTRACT

Molecular targeting of nanoparticle drug carriers promises maximized therapeutic impact to sites of disease or injury with minimized systemic effects. Precise targeting demands addressing to subcellular features. Caveolae, invaginations in cell membranes implicated in transcytosis and inflammatory signaling, are appealing subcellular targets. Caveolar geometry has been reported to impose a ≈50 nm size cutoff on nanocarrier access to plasmalemma vesicle associated protein (PLVAP), a marker found in caveolae in the lungs. The use of deformable nanocarriers to overcome that size cutoff is explored in this study. Lysozyme-dextran nanogels (NGs) are synthesized with ≈150 or ≈300 nm mean diameter. Atomic force microscopy indicates the NGs deform on complementary surfaces. Quartz crystal microbalance data indicate that NGs form softer monolayers (≈60 kPa) than polystyrene particles (≈8 MPa). NGs deform during flow through microfluidic channels, and modeling of NG extrusion through porous filters yields sieving diameters less than 25 nm for NGs with 150 and 300 nm hydrodynamic diameters. NGs of 150 and 300 nm diameter target PLVAP in mouse lungs while counterpart rigid polystyrene particles do not. The data in this study indicate a role for mechanical deformability in targeting large high-payload drug-delivery vehicles to sterically obscured targets like PLVAP.


Subject(s)
Nanoparticles , Animals , Drug Carriers , Drug Delivery Systems , Mice , Polyethylene Glycols , Polyethyleneimine
14.
Sci Rep ; 8(1): 1510, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29367646

ABSTRACT

Targeting drugs to endothelial cells has shown the ability to improve outcomes in animal models of inflammatory, ischemic and thrombotic diseases. Previous studies have revealed that certain pairs of ligands (antibodies and antibody fragments) specific for adjacent, but distinct, epitopes on PECAM-1 enhance each other's binding, a phenomenon dubbed Collaborative Enhancement of Paired Affinity Ligands, or CEPAL. This discovery has been leveraged to enable simultaneous delivery of multiple therapeutics to the vascular endothelium. Given the known role of PECAM-1 in promoting endothelial quiescence and cell junction integrity, we sought here to determine if CEPAL might induce unintended vascular effects. Using a combination of in vitro and in vivo techniques and employing human and mouse endothelial cells under physiologic and pathologic conditions, we found only modest or non-significant effects in response to antibodies to PECAM-1, whether given solo or in pairs. In contrast, these methods detected significant elevation of endothelial permeability, pro-inflammatory vascular activation, and systemic cytokine release following antibody binding to the related endothelial junction protein, VE-Cadherin. These studies support the notion that PECAM-1-targeted CEPAL provides relatively well-tolerated endothelial drug delivery. Additionally, the analysis herein creates a template to evaluate potential toxicities of vascular-targeted nanoparticles and protein therapeutics.


Subject(s)
Antibodies/metabolism , Endothelial Cells/physiology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Animals , Antigens, CD/metabolism , Cadherins/metabolism , Cells, Cultured , Cytokines/metabolism , Humans , Mice, Inbred C57BL , Permeability/drug effects , Protein Binding
15.
J Control Release ; 272: 1-8, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29292038

ABSTRACT

Inflammatory mediators binding to Toll-Like receptors (TLR) induce an influx of superoxide anion in the ensuing endosomes. In endothelial cells, endosomal surplus of superoxide causes pro-inflammatory activation and TLR4 agonists act preferentially via caveolae-derived endosomes. To test the hypothesis that SOD delivery to caveolae may specifically inhibit this pathological pathway, we conjugated SOD with antibodies (Ab/SOD, size ~10nm) to plasmalemmal vesicle-associated protein (Plvap) that is specifically localized to endothelial caveolae in vivo and compared its effects to non-caveolar target CD31/PECAM-1. Plvap Ab/SOD bound to endothelial cells in culture with much lower efficacy than CD31 Ab/SOD, yet blocked the effects of LPS signaling with higher efficiency than CD31 Ab/SOD. Disruption of cholesterol-rich membrane domains by filipin inhibits Plvap Ab/SOD endocytosis and LPS signaling, implicating the caveolae-dependent pathway(s) in both processes. Both Ab/SOD conjugates targeted to Plvap and CD31 accumulated in the lungs after IV injection in mice, but the former more profoundly inhibited LPS-induced pulmonary inflammation and elevation of plasma level of interferon-beta and -gamma and interleukin-27. Taken together, these results indicate that targeted delivery of SOD to specific cellular compartments may offer effective, mechanistically precise interception of pro-inflammatory signaling mediated by reactive oxygen species.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Antibodies/administration & dosage , Carrier Proteins/immunology , Membrane Proteins/immunology , Superoxide Dismutase/administration & dosage , Animals , Caveolae/metabolism , Cells, Cultured , Cytokines/blood , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/immunology , Lipopolysaccharides , Male , Mice, Inbred C57BL
16.
Drug Deliv Transl Res ; 8(4): 883-902, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29282646

ABSTRACT

Vascular endothelial cells represent an important therapeutic target in many pathologies, including inflammation, oxidative stress, and thrombosis; however, delivery of drugs to this site is often limited by the lack of specific affinity of therapeutics for these cells. Selective delivery of both small molecule drugs and therapeutic proteins to the endothelium has been achieved through the use of targeting ligands, such as monoclonal antibodies, directed against endothelial cell surface markers, particularly cell adhesion molecules (CAMs). Careful selection of target molecules and targeting agents allows for precise delivery to sites of inflammation, thereby maximizing therapeutic drug concentrations at the site of injury. A good understanding of the physiological and pathological determinants of drug and drug carrier pharmacokinetics and biodistribution may allow for a priori identification of optimal properties of drug carrier and targeting agent. Targeted delivery of therapeutics such as antioxidants and antithrombotic agents to the injured endothelium has shown efficacy in preclinical models, suggesting the potential for translation into clinical practice. As with all therapeutics, demonstration of both efficacy and safety are required for successful clinical implementation, which must be considered not only for the individual components (drug, targeting agent, etc.) but also for the sum of the parts (e.g., the drug delivery system), as unexpected toxicities may arise with complex delivery systems. While the use of endothelial targeting has not been translated into the clinic to date, the preclinical results summarized here suggest that there is hope for successful implementation of these agents in the years to come.


Subject(s)
Drug Delivery Systems , Endothelium/metabolism , Animals , Antioxidants/administration & dosage , Biological Products/pharmacokinetics , Humans
17.
Pulm Circ ; 8(1): 2045893217752329, 2018.
Article in English | MEDLINE | ID: mdl-29261028

ABSTRACT

The pulmonary vasculature plays an important role in many lung pathologies, such as pulmonary arterial hypertension, primary graft dysfunction of lung transplant, and acute respiratory distress syndrome. Therapy for these diseases is quite limited, largely due to dose-limiting side effects of numerous drugs that have been trialed or approved. High doses of drugs targeting the pulmonary vasculature are needed due to the lack of specific affinity of therapeutic compounds to the vasculature. To overcome this problem, the field of targeted drug delivery aims to target drugs to the pulmonary endothelial cells, especially those in pathological regions. The field uses a variety of drug delivery systems (DDSs), ranging from nano-scale drug carriers, such as liposomes, to methods of conjugating drugs to affinity moieites, such as antibodies. These DDSs can deliver small molecule drugs, protein therapeutics, and imaging agents. Here we review targeted drug delivery to the pulmonary endothelium for the treatment of pulmonary diseases. Cautionary notes are made of the risk-benefit ratio and safety-parameters one should keep in mind when developing a translational therapeutic.

18.
Bioconjug Chem ; 29(1): 56-66, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29200285

ABSTRACT

The conjugation of antibodies to drugs and drug carriers improves delivery to target tissues. Widespread implementation and effective translation of this pharmacologic strategy awaits the development of affinity ligands capable of a defined degree of modification and highly efficient bioconjugation without loss of affinity. To date, such ligands are lacking for the targeting of therapeutics to vascular endothelial cells. To enable site-specific, click-chemistry conjugation to therapeutic cargo, we used the bacterial transpeptidase, sortase A, to attach short azidolysine containing peptides to three endothelial-specific single chain antibody fragments (scFv). While direct fusion of a recognition motif (sortag) to the scFv C-terminus generally resulted in low levels of sortase-mediated modification, improved reaction efficiency was observed for one protein, in which two amino acids had been introduced during cloning. This prompted insertion of a short, semi-rigid linker between scFv and sortag. The linker significantly enhanced modification of all three proteins, to the extent that unmodified scFv could no longer be detected. As proof of principle, purified, azide-modified scFv was conjugated to the antioxidant enzyme, catalase, resulting in robust endothelial targeting of functional cargo in vitro and in vivo.


Subject(s)
Click Chemistry/methods , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/pharmacokinetics , Amino Acid Sequence , Aminoacyltransferases/metabolism , Animals , Bacterial Proteins/metabolism , Catalase/metabolism , Cell Line , Cysteine Endopeptidases/metabolism , Humans , Intercellular Adhesion Molecule-1/administration & dosage , Intercellular Adhesion Molecule-1/chemistry , Intercellular Adhesion Molecule-1/metabolism , Mice , Mice, Inbred C57BL , Models, Molecular , Platelet Endothelial Cell Adhesion Molecule-1/administration & dosage , Platelet Endothelial Cell Adhesion Molecule-1/chemistry , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/pharmacokinetics , Single-Chain Antibodies/administration & dosage , Single-Chain Antibodies/metabolism , Tissue Distribution
19.
PLoS One ; 12(1): e0169537, 2017.
Article in English | MEDLINE | ID: mdl-28085903

ABSTRACT

Monoclonal antibodies (mAbs) directed to extracellular epitopes of human and mouse Platelet Endothelial Cell Adhesion Molecule-1 (CD31 or PECAM-1) stimulate binding of other mAbs to distinct adjacent PECAM-1 epitopes. This effect, dubbed Collaborative Enhancement of Paired Affinity Ligands, or CEPAL, has been shown to enhance delivery of mAb-targeted drugs and nanoparticles to the vascular endothelium. Here we report new insights into the mechanism underlying this effect, which demonstrates equivalent amplitude in the following models: i) cells expressing a full length PECAM-1 and mutant form of PECAM-1 unable to form homodimers; ii) isolated fractions of cellular membranes; and, iii) immobilized recombinant PECAM-1. These results indicate that CEPAL is mediated not by interference in cellular functions or homophilic PECAM-1 interactions, but rather by conformational changes within the cell adhesion molecule induced by ligand binding. This mechanism, mediated by exposure of partially occult epitopes, is likely to occur in molecules other than PECAM-1 and may represent a generalizable phenomenon with valuable practical applications.


Subject(s)
Antibodies, Monoclonal/immunology , Cell Adhesion/immunology , Cell Membrane/immunology , Endothelium, Vascular/metabolism , Epitopes/immunology , Lung Neoplasms/metabolism , Mesothelioma/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/immunology , Animals , Antibodies, Monoclonal/metabolism , Cells, Cultured , Endothelium, Vascular/immunology , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Mesothelioma/immunology , Mesothelioma/pathology , Mesothelioma, Malignant , Mice , Platelet Endothelial Cell Adhesion Molecule-1/metabolism
20.
Nanomedicine ; 13(4): 1495-1506, 2017 05.
Article in English | MEDLINE | ID: mdl-28065731

ABSTRACT

Inflamed organs display marked spatial heterogeneity of inflammation, with patches of inflamed tissue adjacent to healthy tissue. To investigate how nanocarriers (NCs) distribute between such patches, we created a mouse model that recapitulates the spatial heterogeneity of the inflammatory lung disease ARDS. NCs targeting the epitope PECAM strongly accumulated in the lungs, but were shunted away from inflamed lung regions due to hypoxic vasoconstriction (HVC). In contrast, ICAM-targeted NCs, which had lower whole-lung uptake than PECAM/NCs in inflamed lungs, displayed markedly higher NC levels in inflamed regions than PECAM/NCs, due to increased regional ICAM. Regional HVC, epitope expression, and capillary leak were sufficient to predict intra-organ of distribution of NCs, antibodies, and drugs. Importantly, these effects were not observable with traditional spatially-uniform models of ARDS, nor when examining only whole-organ uptake. This study underscores how examining NCs' intra-organ distribution in spatially heterogeneous animal models can guide rational NC design.


Subject(s)
Drug Carriers/pharmacokinetics , Epitopes/immunology , Inflammation/pathology , Lung/pathology , Nanoparticles/chemistry , Animals , Antibodies/chemistry , Drug Carriers/chemistry , Epitopes/chemistry , Hypoxia/physiopathology , Inflammation/metabolism , Intercellular Adhesion Molecule-1/immunology , Lung/metabolism , Mice , Mice, Inbred C57BL , Platelet Endothelial Cell Adhesion Molecule-1/immunology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Vasoconstriction
SELECTION OF CITATIONS
SEARCH DETAIL
...