Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacology ; 71(3): 143-9, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15161996

ABSTRACT

We have previously shown that N/OFQ, the endogenous peptide ligand for the 'opioid-like' NOP receptor, inhibits cough in guinea pigs and cats. In the present study we sought to continue our characterization of the cough-suppressant effects of NOP stimulation by profiling the pulmonary and antitussive effects of a novel non-peptide NOP agonist, Ro-64-6198, in guinea pigs. In receptor-binding assays, we confirmed that Ro-64-6198 selectively binds to NOP receptors over other opioid receptors. The Ki values for Ro-64-6198 at NOP, MOP, KOP and DOP receptors was 0.3, 36, 214 and 3,787 nmol/l, respectively. In GTPgammaS-binding assays, Ro-64-6198 displayed >900-fold functional selectivity at NOP relative to MOP receptors. We evaluated the effects of Ro-64-6198 (3 and 10 micromol/l) in isolated guinea pig nodose ganglia cells on the increases in intracellular Ca2+ concentration evoked by capsaicin stimulation (1 x 10(-8)-1 x 10(-6) mol/l). Similar to previously reported data with N/OFQ, Ro-64-6198 (3 and 10 micromol/l) significantly attenuated Ca2+ responses in nodose ganglia cells produced by exposure to capsaicin. The effect of Ro-64-6198 (3 micromol/l) on capsaicin-induced intracellular Ca2+ responses was blocked by the NOP antagonist, J113397 (3 micromol/l). In guinea pig in vivo studies, aerosolized capsaicin (10-300 micromol/l) produced a dose-dependent increase in cough number. Ro-64-6198 given i.p. significantly inhibited cough due to capsaicin (300 micromol/l) exposure. In a duration study we found that the maximum antitussive effect (42 +/- 8% inhibition) of Ro-64-6198 (3 mg/kg) was observed at 1 h after i.p. administration. Also at 1 h after administration, Ro-64-6198 (0.003-3.0 mg/kg, i.p.) produced a dose-dependent inhibition of cough. The antitussive effect of Ro-64-6198 (3 mg/kg, i.p.) was blocked by J113397 (12 mg/kg, i.p.) but not by the classical opioid antagonist naltrexone (10 mg/kg, i.p.). Although the antitussive action of Ro-64-6198 may be mediated by a central and/or a peripheral site of action, we hypothesize that selective oral NOP agonists that do not penetrate the blood-brain barrier may provide a novel approach for the treatment of cough. Moreover, because these drugs do not interact at MOP receptors, they may be devoid of codeine-like side effects such as respiratory depression, sedation, constipation or proclivities for addictive liabilities.


Subject(s)
Antitussive Agents/pharmacology , Imidazoles/pharmacology , Receptors, Opioid/agonists , Spiro Compounds/pharmacology , Aerosols , Animals , Antitussive Agents/administration & dosage , CHO Cells , Calcium/metabolism , Capsaicin/administration & dosage , Capsaicin/pharmacology , Cough/prevention & control , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Guinea Pigs , Imidazoles/administration & dosage , In Vitro Techniques , Injections, Intraperitoneal , Male , Nodose Ganglion/cytology , Nodose Ganglion/metabolism , Receptors, Opioid/metabolism , Spiro Compounds/administration & dosage , Nociceptin Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...