Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Aerosol Air Qual Res ; 18(7): 1788-1798, 2018 Jul.
Article in English | MEDLINE | ID: mdl-32601523

ABSTRACT

In this study, an approach has been developed for differentiating between local and remote pollution over Taiwan, based on homogeneity perspective (variations of the standard deviation) of both AERONET measurements and NASA MERRA aerosol reanalysis (version 2, MERRA-2) over a 15-year period (2002 - 2017). The analysis of seasonal variations of the standard deviation of aerosol optical depth (AOD) measurements at six AERONET sites and MERRA AOD data in Taiwan showed that, in spring when remote aerosols dominate, the standard deviation is almost three times lower than that in autumn, when aerosols from local sources dominate. This finding was supported by MERRA AOD over the open ocean area: total AOD data were used to differentiate between local and remote pollution over both Taiwan and the open ocean area in the vicinity of Taiwan. Over Taiwan, MERRA total AOD showed a primary maximum in spring and a secondary one in autumn. Over the open ocean area, where there are no local sources of anthropogenic aerosols, MERRA total AOD showed only one maximum in spring and no maximum in autumn. This suggests that, in Taiwan, the maximum in autumn is attributed to local air pollution, while the pronounced maximum in spring is mainly caused by air pollution from continental Asia. The analyses of spatial distribution of 15-year monthly mean MERRA winds confirmed the above-mentioned results. Furthermore, similar to total AOD, MERRA sulfate AOD peaked in autumn over Taiwan, but not over the oceanic area: this indicates the contribution of local emissions of anthropogenic aerosols from the industrial sector. The standard deviation of MERRA sulfate AOD in spring is two-three times lower than the standard deviation in autumn: this is additional evidence that, in spring, sulfate aerosols from remote sources are predominant; while in autumn sulfate aerosols from local sources dominate.

2.
Urban Clim ; 20: 168-191, 2017 Jun.
Article in English | MEDLINE | ID: mdl-29683129

ABSTRACT

NASA recently extended the Modern-Era Retrospective Analysis for Research and Application (MERRA) with an atmospheric aerosol reanalysis which includes five particulate species: sulfate, organic matter, black carbon, mineral dust and sea salt. The MERRA Aerosol Reanalysis (MERRAero) is an innovative tool to study air quality issues around the world for its global and constant coverage and its distinction of aerosol speciation expressed in the form of aerosol optical depth (AOD). The purpose of this manuscript is to apply MERRAero to the study of urban air pollution at the global scale by analyzing the AOD over a period of 13 years (2003-2015) and over a selection of 200 of the world's most populated cities in order to assess the impacts of urbanization, industrialization, air quality regulations and regional transport which affect urban aerosol load. Environmental regulations and the recent global economic recession have helped to decrease the AOD and sulfate aerosols in most cities in North America, Europe and Japan. Rapid industrialization in China over the last two decades resulted in Chinese cities having the highest AOD values in the world. China has nevertheless recently implemented emission control measures which are showing early signs of success in many cities of Southern China where AOD has decreased substantially over the last 13 years. The AOD over South American cities, which is dominated by carbonaceous aerosols, has also decreased over the last decade due to an increase in commodity prices which slowed deforestation activities in the Amazon rainforest. At the opposite, recent urbanization and industrialization in India and Bangladesh resulted in a strong increase of AOD, sulfate and carbonaceous aerosols in most cities of these two countries. The AOD over most cities in Northern Africa and Western Asia changed little over the last decade. Emissions of natural aerosols, which cities in these two regions tend to be mostly composed of, don't tend to fluctuate significantly on an annual basis.

3.
Sci Total Environ ; 544: 1045-58, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26779955

ABSTRACT

The Dead Sea region has faced substantial environmental challenges in recent decades, including water resource scarcity, ~1m annual decreases in the water level, sinkhole development, ascending-brine freshwater pollution, and seismic disturbance risks. Natural processes are significantly affected by human interference as well as by climate change and tectonic developments over the long term. To get a deep understanding of processes and their interactions, innovative scientific approaches that integrate disciplinary research and education are required. The research project DESERVE (Helmholtz Virtual Institute Dead Sea Research Venue) addresses these challenges in an interdisciplinary approach that includes geophysics, hydrology, and meteorology. The project is implemented by a consortium of scientific institutions in neighboring countries of the Dead Sea (Israel, Jordan, Palestine Territories) and participating German Helmholtz Centres (KIT, GFZ, UFZ). A new monitoring network of meteorological, hydrological, and seismic/geodynamic stations has been established, and extensive field research and numerical simulations have been undertaken. For the first time, innovative measurement and modeling techniques have been applied to the extreme conditions of the Dead Sea and its surroundings. The preliminary results show the potential of these methods. First time ever performed eddy covariance measurements give insight into the governing factors of Dead Sea evaporation. High-resolution bathymetric investigations reveal a strong correlation between submarine springs and neo-tectonic patterns. Based on detailed studies of stratigraphy and borehole information, the extension of the subsurface drainage basin of the Dead Sea is now reliably estimated. Originality has been achieved in monitoring flash floods in an arid basin at its outlet and simultaneously in tributaries, supplemented by spatio-temporal rainfall data. Low-altitude, high resolution photogrammetry, allied to satellite image analysis and to geophysical surveys (e.g. shear-wave reflections) has enabled a more detailed characterization of sinkhole morphology and temporal development and the possible subsurface controls thereon. All the above listed efforts and scientific results take place with the interdisciplinary education of young scientists. They are invited to attend joint thematic workshops and winter schools as well as to participate in field experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...