Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 12(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37765466

ABSTRACT

Vegetatively propagating aquatic angiosperms, the Lemnaceae family (duckweeds) represents valuable genetic resources for circular bioeconomics and other sustainable applications. Due to extremely fast growth and laborious cultivation of in vitro collections, duckweeds are an urgent subject for cryopreservation. We developed a robust and fast DMSO-free protocol for duckweed cryopreservation by vitrification. A single-use device was designed for sampling of duckweed fronds from donor culture, further spin-drying, and subsequent transferring to cryo-tubes with plant vitrification solution 3 (PVS3). Following cultivation in darkness and applying elevated temperatures during early regrowth stage, a specific pulsed illumination instead of a diurnal regime enabled successful regrowth after the cryopreservation of 21 accessions of Spirodela, Landoltia, Lemna, and Wolffia genera, including interspecific hybrids, auto- and allopolyploids. Genome size measurements revealed no quantitative genomic changes potentially caused by cryopreservation. The expression of CBF/DREB1 genes, considered as key factors in the development of freezing tolerance, was studied prior to cooling but was not linked with duckweed regrowth after rewarming. Despite preserving chlorophyll fluorescence after rewarming, the rewarmed fronds demonstrated nearly zero photosynthetic activity, which did not recover. The novel protocol provides the basis for future routine application of cryostorage to duckweed germplasm collections, saving labor for in vitro cultivation and maintaining characterized reference and mutant samples.

2.
Plants (Basel) ; 12(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36771672

ABSTRACT

Tiny aquatic plants from the Lemnaceae family, commonly known as duckweeds, are often regarded as detrimental to the environment because of their ability to quickly populate and cover the surfaces of bodies of water. Due to their rapid vegetative propagation, duckweeds have one of the fastest growth rates among flowering plants and can accumulate large amounts of biomass in relatively short time periods. Due to the high yield of valuable biomass and ease of harvest, duckweeds can be used as feedstock for biofuels, animal feed, and other applications. Thanks to their efficient absorption of nitrogen- and phosphate-containing pollutants, duckweeds play an important role in the restorative ecology of water reservoirs. Moreover, compared to other species, duckweed species and ecotypes demonstrate exceptionally high adaptivity to a variety of environmental factors; indeed, duckweeds remove and convert many contaminants, such as nitrogen, into plant biomass. The global distribution of duckweeds and their tolerance of ammonia, heavy metals, other pollutants, and stresses are the major factors highlighting their potential for use in purifying agricultural, municipal, and some industrial wastewater. In summary, duckweeds are a powerful tool for bioremediation that can reduce anthropogenic pollution in aquatic ecosystems and prevent water eutrophication in a simple, inexpensive ecologically friendly way. Here we review the potential for using duckweeds in phytoremediation of several major water pollutants: mineral nitrogen and phosphorus, various organic chemicals, and heavy metals.

3.
Plants (Basel) ; 12(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36616338

ABSTRACT

Nitrogen is an essential nutrient that affects all aspects of the growth, development and metabolic responses of plants. Here we investigated the influence of the two major sources of inorganic nitrogen, nitrate and ammonium, on the toxicity caused by excess of Mn in great duckweed, Spirodela polyrhiza. The revealed alleviating effect of ammonium on Mn-mediated toxicity, was complemented by detailed molecular, biochemical and evolutionary characterization of the species ammonium transporters (AMTs). Four genes encoding AMTs in S. polyrhiza, were classified as SpAMT1;1, SpAMT1;2, SpAMT1;3 and SpAMT2. Functional testing of the expressed proteins in yeast and Xenopus oocytes clearly demonstrated activity of SpAMT1;1 and SpAMT1;3 in transporting ammonium. Transcripts of all SpAMT genes were detected in duckweed fronds grown in cultivation medium, containing a physiological or 50-fold elevated concentration of Mn at the background of nitrogen or a mixture of nitrate and ammonium. Each gene demonstrated an individual expression pattern, revealed by RT-qPCR. Revealing the mitigating effect of ammonium uptake on manganese toxicity in aquatic duckweed S. polyrhiza, the study presents a comprehensive analysis of the transporters involved in the uptake of ammonium, shedding a new light on the interactions between the mechanisms of heavy metal toxicity and the regulation of the plant nitrogen metabolism.

4.
Plants (Basel) ; 11(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35684242

ABSTRACT

Monitoring and characterizing species biodiversity is essential for germplasm preservation, academic studies, and various practical applications. Duckweeds represent a group of tiny aquatic plants that include 36 species divided into 5 genera within the Lemnaceae family. They are an important part of aquatic ecosystems worldwide, often covering large portions of the water reservoirs they inhabit, and have many potential applications, including in bioremediation, biofuels, and biomanufacturing. Here, we evaluated the biodiversity of duckweeds in Ukraine and Eastern China by characterizing specimens using the two-barcode protocol with the chloroplast atpH-atpF and psbK-psbI spacer sequences. In total, 69 Chinese and Ukrainian duckweed specimens were sequenced. The sequences were compared against sequences in the NCBI database using BLAST. We identified six species from China (Spirodela polyrhiza, Landoltia punctata, Lemna aequinoctialis, Lemna minor, Lemna turionifera, and Wolffia globosa) and six from Ukraine (S. polyrhiza, Lemna gibba, Lemna minor, Lemna trisulca, Lemna turionifera, and Wolffia arrhiza). The most common duckweed species in the samples from Ukraine were Le. minor and S. polyrhiza, accounting for 17 and 15 out of 40 specimens, respectively. The most common duckweed species in the samples from China was S. polyrhiza, accounting for 15 out of 29 specimens. La. punctata and Le. aequinoctialis were also common in China, accounting for five and four specimens, respectively. According to both atpH-atpF and psbK-psbI barcode analyses, the species identified as Le. aequinoctialis does not form a uniform taxon similar to other duckweed species, and therefore the phylogenetic status of this species requires further clarification. By monitoring duckweeds using chloroplast DNA sequencing, we not only precisely identified local species and ecotypes, but also provided background for further exploration of native varieties with diverse genetic backgrounds. These data could be useful for future conservation, breeding, and biotechnological applications.

5.
Biotechnol Adv ; 60: 108007, 2022 11.
Article in English | MEDLINE | ID: mdl-35732257

ABSTRACT

Doubled haploid production is a valuable biotechnology that can accelerate the breeding of new wheat varieties by several years through the one-step creation of 100% homozygous plants. The technology also plays important role in studying the genetic control of traits in wheat, in marker-assisted selection, in genomics and in genetic engineering. In this paper, recent advances in androgenesis and gynogenesis techniques, emphasizing predominantly the in vitro culture phase, as well as the emerging innovative approaches in researching and producing wheat doubled haploids are reviewed. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing, that allows targeted mutagenesis and gene targeting, is being tested extensively as a powerful and precise tool to induce doubled haploids in wheat. The review provides the reader with recent examples of gene modifications in wheat to induce haploidy.


Subject(s)
Plant Breeding , Triticum , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing/methods , Haploidy , Plant Breeding/methods , Triticum/genetics
6.
Article in English | MEDLINE | ID: mdl-34805101

ABSTRACT

Plant-based transient expression systems have recognized potential for use as rapid and cost-effective alternatives to expression systems based on bacteria, yeast, insect, or mammalian cells. The free-floating aquatic plants of the Lemnaceae family (duckweed) have compact architecture and can be vegetatively propagated on low-cost nutrient solutions in aseptic conditions. These features provide an economically feasible opportunity for duckweed-based production of high-value products via transient expression of recombinant products in fully contained, controlled, aseptic and bio-safe conditions in accordance with the requirements for pharmaceutical manufacturing and environmental biosafety. Here, we demonstrated Agrobacterium-mediated high-yield transient expression of a reporter green fluorescent protein using deconstructed vectors based on potato virus X and sweet potato leaf curl virus, as well as conventional binary vectors, in two representatives of the Lemnaceae (Spirodela polyrhiza and Landoltia punctata). Aseptically cultivated duckweed populations yielded reporter protein accumulation of >1 mg/g fresh biomass, when the protein was expressed from a deconstructed potato virus X-based vector, which is capable of replication and cell-to-cell movement of the replicons in duckweed. The expression efficiency demonstrated here places duckweed among the most efficient host organisms for plant-based transient expression systems, with the additional benefits of easy scale-up and full containment.

7.
Plants (Basel) ; 11(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35009015

ABSTRACT

Duckweed plants play important roles in aquatic ecosystems worldwide. They rapidly accumulate biomass and have potential uses in bioremediation of water polluted by fertilizer runoff or other chemicals. Here we studied the assimilation of two major sources of inorganic nitrogen, nitrate (NO3- ) and ammonium (NH4+), in six duckweed species: Spirodela polyrhiza, Landoltia punctata, Lemna aequinoctialis, Lemna turionifera, Lemna minor, and Wolffia globosa. All six duckweed species preferred NH4+ over NO3- and started using NO3- only when NH4+ was depleted. Using the available genome sequence, we analyzed the molecular structure and expression of eight key nitrogen assimilation genes in S. polyrhiza. The expression of genes encoding nitrate reductase and nitrite reductase increased about 10-fold when NO3- was supplied and decreased when NH4+ was supplied. NO3- and NH4+ induced the glutamine synthetase (GS) genes GS1;2 and the GS2 by 2- to 5-fold, respectively, but repressed GS1;1 and GS1;3. NH4+ and NO3- upregulated the genes encoding ferredoxin- and NADH-dependent glutamate synthases (Fd-GOGAT and NADH-GOGAT). A survey of nitrogen assimilation gene promoters suggested complex regulation, with major roles for NRE-like and GAATC/GATTC cis-elements, TATA-based enhancers, GA/CTn repeats, and G-quadruplex structures. These results will inform efforts to improve bioremediation and nitrogen use efficiency.

8.
Biotechnol Adv ; 46: 107676, 2021.
Article in English | MEDLINE | ID: mdl-33285253

ABSTRACT

Capturing heterosis (hybrid vigor) is a promising way to increase productivity in many crops; hybrid crops often have superior yields, disease resistance, and stress tolerance compared with their parental inbred lines. The full utilization of heterosis faces a number of technical problems related to the specifics of crop reproductive biology, such as difficulties with generating and maintaining male-sterile lines and the low efficiency of natural cross-pollination for some genetic combinations. Innovative technologies, such as development of artificial in vitro systems for hybrid production and apomixis-based systems for maintenance of the resulting heterotic progeny, may substantially facilitate the production of hybrids. Genome editing using specifically targeted nucleases, such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (CRISPR/Cas9) systems, which recognize targets by RNA:DNA complementarity, has recently become an integral part of research and development in life science. In this review, we summarize the progress of genome editing technologies for facilitating the generation of mutant male sterile lines, applications of haploids for hybrid production, and the use of apomixis for the clonal propagation of elite hybrid lines.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Crop Production , Crops, Agricultural/genetics
9.
aBIOTECH ; 1(4): 233-245, 2020 Oct.
Article in English | MEDLINE | ID: mdl-36304127

ABSTRACT

Gene editing technologies such as CRISPR/Cas9 have been used to improve many agricultural traits, from disease resistance to grain quality. Now, emerging research has used CRISPR/Cas9 and other gene editing technologies to target plant reproduction, including major areas such as flowering time and seed dormancy. Traits related to these areas have important implications for agriculture, as manipulation of flowering time has multiple applications, including tailoring crops for regional adaptation and improving yield. Moreover, understanding seed dormancy will enable approaches to improve germination upon planting and prevent pre-harvest sprouting. Here, we summarize trends and recent advances in using gene editing to gain a better understanding of plant reproduction and apply the resulting information for crop improvement.

10.
Biomed Res Int ; 2019: 6216304, 2019.
Article in English | MEDLINE | ID: mdl-30956982

ABSTRACT

To feed the growing human population, global wheat yields should increase to approximately 5 tonnes per ha from the current 3.3 tonnes by 2050. To reach this goal, existing breeding practices must be complemented with new techniques built upon recent gains from wheat genome sequencing, and the accumulated knowledge of genetic determinants underlying the agricultural traits responsible for crop yield and quality. In this review we primarily focus on the tools and techniques available for accessing gene functions which lead to clear phenotypes in wheat. We provide a view of the development of wheat transformation techniques from a historical perspective, and summarize how techniques have been adapted to obtain gain-of-function phenotypes by gene overexpression, loss-of-function phenotypes by expressing antisense RNAs (RNA interference or RNAi), and most recently the manipulation of gene structure and expression using site-specific nucleases, such as CRISPR/Cas9, for genome editing. The review summarizes recent successes in the application of wheat genetic manipulation to increase yield, improve nutritional and health-promoting qualities in wheat, and enhance the crop's resistance to various biotic and abiotic stresses.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Gene Transfer Techniques , Plants, Genetically Modified , Triticum , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Triticum/genetics , Triticum/growth & development
11.
Front Chem ; 6: 317, 2018.
Article in English | MEDLINE | ID: mdl-30094233

ABSTRACT

The plant cuticle, which consists of cutin and waxes, forms a hydrophobic coating covering the aerial surfaces of all plants. It acts as an interface between plants and their surrounding environment whilst also protecting them against biotic and abiotic stresses. In this research, we have investigated the biodiversity and cuticle properties of aquatic plant duckweed, using samples isolated from four different locations around Hongze lake in Jiangsu province, China. The samples were genotyped using two chloroplast markers and nuclear ribosomal DNA markers, which revealed them as ecotypes of the larger duckweed, Spirodela polyrhiza. Duckweed cuticle properties were investigated by compositional analysis using Gas Chromatography coupled with Mass Spectroscopy (GC-MS) Flame Ionization Detector (GC-FID), and ultrastructural observation by cryo-Scanning Electron Microscopy (cryo-SEM). Cuticle compositional analysis indicated that fatty acids and primary alcohols, the two typical constituents found in many land plant cuticle, are the major duckweed wax components. A large portion of the duckweed wax fraction is composed of phytosterols, represented by campesterol, stigmasterol, sitosterol and their common precursor squalene. The cryo-SEM observation uncovered significant differences between the surface structures of the top air-facing and bottom water-facing sides of the plant fronds. The top side of the fronds, containing multiple stomata complexes, appeared to be represented by a rather flat waxy film sporadically covered with wax crystals. Underneath the waxy film was detected a barely distinguished nanoridge net, which became distinctly noticeable after chloroform treatment. On the bottom side of the fronds, the large epidermal cells were covered by the well-structured net, whose sections became narrower and sharper under cryo-SEM following chloroform treatment. These structural differences between the abaxial and adaxial sides of the fronds evidently relate to their distinct physiological roles in interacting with the contrasting environments of sunlight/air and nutrients/water. The unique structural and biochemical features of Spirodela frond surfaces with their rapid reproductive cycle and readily availability genome sequence, make duckweed an attractive monocot model for studying the fundamental processes related to plant protection against ultraviolet irradiation, pathogens and other environmental stresses.

SELECTION OF CITATIONS
SEARCH DETAIL
...